Reachability Analysis of Feature Interactions: A Progress Report

Keith P. Pomakis

Joanne M. Atlee*

Department of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1

Abstract. Features are added to an existing system
to add functionality. A new feature interacts with
an existing feature if the behavior of the existing fea-
ture is changed by the presence of the new feature.
Our research group has started to investigate how to
detect feature interactions during the requirements
phase of feature development. We have adopted a
layered state-transition machine model that priori-
tizes features and avoids interactions due to non-
determinism. We have a tabular notation for spec-
ifying behavioral requirements of services and fea-
tures. Specifications are composed into a reachability
graph, and the graph is searched for feature inter-
actions. This paper demonstrates how reachability
analysis has been used to automatically detect known
control interactions, data interactions, and resource
contentions among telephony features.

1 Introduction

A feature in a software system is a sub-program that
adds functionality to another feature or to the original
system. A new feature interacts with an existing fea-
ture if the behavior of the existing feature is changed
by the presence of the new feature. A key problem
in software enhancement is how to add features to a
system without disrupting the services and features al-
ready provided. Note that features, by definition, in-
teract: at the least, a new feature is expected to inter-
act with those features and/or services whose function-
alities are intentionally modified by the new feature.
Thus, the problem of detecting feature interactions is
twofold: we want to validate specified interactions and
to detect unspecified interactions.

*This research has been supported in part by the Natural
Sciences and Engineering Research Council of Canada grant
FSP137101, with matching funds from Bell-Northern Research
Ltd.

It is essential that the analysis of feature interac-
tions be automated. There exist systems that provide
hundreds of features: the DMS-100! telephone switch
offers over 800 telephony features (e.g., Call Waiting,
Call Forwarding, etc.). Given a system that supports
N features, there are N(N —1)/2 pairs of features that
need to be checked for possible interactions.

Previously, we presented a requirements notation for
specifying features [3]. This paper introduces a set
of tools that incrementally compose feature specifica-
tions into a reachability graph and search the graph for
certain classes of interactions. The tools’ interaction-
detection algorithms test states as opposed to paths in
the reachability graph. This means that tested, reach-
able states can be discarded if the reachability graph
generator will not re-generate the state and if the state
is not important in future phases of the composition.

The following section describes the architectural
model we have adopted and our notation for specify-
ing features. Section 3 describes the execution model,
based on the architectural model, for constructing the
composition of a set of features. Section 4 defines the
classes of feature interactions that can be detected au-
tomatically, using examples of interactions among tele-
phony features. The paper concludes with a discussion
of open issues.

2 Architectural Model

A large class of feature interactions are due to non-
determinism. For example, if two active features f and
g operate on the same input from the user, which fea-
ture gets the input data first? If feature f operates on
the data first and g never sees the input, then the pres-
ence of feature f has altered the control-flow of feature
g. Similarly, if feature f operates on the data first and
g sees a modified version of the input data, then again
the presence of f may affect the behavior of feature g.

We adopt a stack architecture (or layered architec-
ture) of services and features, which resolves interac-
tions due to non-determinism by prioritizing features.

IDMS is a trademark of Northern Telecom.

Basic Service

Figure 1: Feature stack architecture

The basic service resides at the bottom of the stack,
and the features are placed in a prioritized order above
the basic service (see Figure 1). Events from the agent
(the user of the service) are input to the top-level fea-
ture and flow down through the layers towards the ba-
sic service. Responses from the basic-service machine
are sent to the bottom-level feature and progress up
through the layers towards the user. The feature at
the top of the stack has top priority: it is the first fea-
ture to operate on data entering the system and is the
last feature to modify data that is leaving the system.
Newly activated features are given highest priority and
are placed on the top of the stack, because it is as-
sumed that users will primarily want to interface with
the feature they have most recently invoked.

There are databases, operating systems, and control
software [4, 6] that have stack architectures. Commu-
nication protocols and telephone calls [11] can also be
modeled using stack architectures: a call can be rep-
resented by two communicating feature stacks, where
each stack models the behavior of one end of the call.
If an agent is involved in multiple calls, then the agent
will interface with multiple feature stacks (see agentB
in Figure 2).

If a feature affects more than one call, then a com-
ponent of the feature will reside in each appropriate
feature stack (see Figure 2). For example, telephony
feature Call Waiting allows one agent to engage in two
different telephone calls at the same time. Two or more
calls are referred to as a call system.

The remainder of this paper will concentrate on
detecting and resolving feature interactions in tele-
phony system. We anticipate that our methods can
be adapted for use in other service-oriented systems.

2.1 Tabular Specification Notation

Basic telephone service is specified as two communicat-
ing state-transition machines. One machine (called the
the Originating Call Model, or simply OCM) models

agent A agent B agent C

network _] \|,

Figure 2: A call system

the initiation of a call: it specifies the interaction be-
tween the calling agent and the telephone service (e.g.,
receiving a dial-tone, dialing digits, etc.). The other
machine (called the Terminating Call Model, or simply
TCM) models the receiving end of a call: it specifies
the interaction between the called agent and the service
(e.g., ringing phone). In addition, both machines send
messages to each other, to synchronize the creation and
dismantlement of a telephone connection.

Telephone features are specified as sets of state-
transition machines. Each machine in the set describes
behavior of a feature with respect to one end of a call.
Thus, if a feature can modify either the originating or
receiving end of a call, or if a feature affects more than
one call, then a feature’s specification may consist of
more than one state-transition machine. The decision
to decompose feature specifications into multiple sub-
feature specifications was made to ease the reasoning
and writing of specifications.

Sub-feature specifications have a tabular format.
Each row in the table specifies a state transition from
the state on the left to the new state on the right. A
state transition is activated by an input event, and
its occurrence may produce output events and re-
quest /release resources.

Table 1 formally specifies the behavior of the Three-
Way Calling (3WC) feature for the initial call with
respect to the OCM (i.e., the agent initiated the call)?.
The 3WC sub-feature starts in state NULL. The agent
invokes the feature by quickly pressing the receiver
hook (which is normally used to hang-up the phone)
and causing a |} FlashHook event. This puts the cur-
rent call in a HOLDING state and starts a second feature
stack (NewCall(OCM)) to model the call to the third
party. Eventually the second call is established, and
the two calls are joined into a single CONFERENCE call
involving all three parties. The feature is deactivated
if either of the two calls is terminated. If the agent

2Separate tables would specify the behavior of the initial call
with respect to the TCM (i.e., the agent received the initial call)
and the behavior of the new call to the third party.

[State | Input | Output | NewState | Resources |
NULL |} 4FlashHook NewCall(OCM) | HoLDING +bridge
HoLbInGg = swc CONFERENCE CONFERENCE

= gwc NULL Alert{) 4 RINGBACK
TrReleaseTimeout K forward>> NULL —bridge
Jax HoLbING
Tax HoLbING
CONFERENCE | |} 4Disconnect K forward>> NULL —bridge
fTrReleaseTimeout K forward>> NULL —bridge
RINGBACK {} AAnswered NULL —bridge
>RingingTimeout | Disconnect|) 4 NuLL —bridge
fTrReleaseTimeout K forward>> NULL —bridge
{Jax RINGBACK
Tax RINGBACK

Table 1: Three-Way Calling, for original call with respect to OCM.

hangs up the phone while trying to call the third party,
leaving the second party on hold, the 3WC feature will
attempt to re-establish the call by ringing the agent’s
telephone (in the RINGBACK state). Other transitions
in the table specify the behavior of the feature under
abnormal conditions (e.g., the feature consumes events
from the environment if the call is on hold).
Six types of events have been identified:

Token events ({}at, Yrt, frat, 1rt) indicate the re-
ceipt or sending of a message t (called a token)
nominally passed between the agent and the basic
service. If there are active features on the feature
stack, then these features have access to tokens
that are traveling to their nominal destination. To-
kens always have a direction ({ or {}) and a desti-
nation (Agent or Remote feature stack). An input
event designating the receipt of an asterik token
(e.g., Ur*and | 4*) matches any token event.

Internal events (>e) are events which indicate an
internal decision made by a feature. For example
when Three-Way Calling (3WC) is in state RING-
Back, the feature rings the agent’s phone in an
attempt to re-establish a held call that the agent
hung up on. After a specified amount of time, the
feature makes an internal decision to dismantle the
call.

Parallel events (=;S) are the communication
mechanism among a feature’s sub-features. If a
feature fis represented by several sub-features re-
siding on different feature stacks, each sub-feature
can use a parallel event to notify their sibling sub-
features that it has made a transition to a new
state S.

StateChangeRequest events (S1=;S2(e))
are events which indicate the desire of a feature
to change state. When a feature intercepts a
StateChangeRequest from a lower-level feature, it

can either pass it on unchanged, pass on a mod-
ified StateChangeRequest (which must specify a
valid state transition rule in the target feature), or
pass on nothing (thereby disallowing the requested
state transition). These events are discussed in
more detail in Section 2.3.3.

NewCall events are events specifying the creation of
a new feature stack (i.e., a new call based on an

Originating Call Model) on behalf of the agent.

Note that there are two methods by which a feature
can affect the operation of the underlying call model.
One method is to generate tokens on behalf of the lo-
cal or remote agent; these tokens are passed down the
feature stack towards the call model and are expected
to cause the call model to change state. The second
method is to circumvent certain state transitions in the
call model or in lower-level features and replace them
with new state transitions.

The tables specify the behavior of a feature in terms
of functions. Let T be the set of all tokens that can
be passed among features on the same feature stack;
we define inT to be the set of input events denoting
the receipt of a token ¢+ € T' and outT to be the set
of events denoting the output of a token ¢t € T. Sim-
ilarly, let R be the set of state-change-request events
made by the call models and features; we define inR
and outR be the sets of events denoting the receipt or
the output of a state-change-request, respectively. For
a given feature f, let S be the feature’s set of states,
let I be the feature’s set of internal signals, and let A
be the set of available resources. Then formally, a tab-
ular specification T represents the feature’s transition

relation:3

T : (SxAx(inTUinRUI)) — (Sx AxP(outTUoutR))

31In the above relation definition, P(s) represents the powerset
of set s.

That is, 7 is a partial function from (states, allocated
resources and input events) to (states, allocated re-
sources and sets of output events). Note that sets T,
R, and A will grow as new tokens, state-transition-
requests, and resources are needed to implement new
features.

2.2 Composition of Specifications

A feature is not a stand-alone-entity; it must always
be examined in the context of the system or systems
in which it is to exist. For this reason, it is important
to understand the mechanisms through which features
communicate when their specifications are composed.

2.2.1 Activation of Features

A feature can only affect the basic service if it is ac-
tive. Features that the agent has subscribed to but that
are not yet active are not on the feature stack but are
instead managed by an entity called the feature activa-
tor. Every feature stack has a feature activator which
monitors the stack for events which may trigger the
activation of any of the features it manages.

In the initial configuration of a feature stack, all
features, including the basic service, are inactive (i.e.,
in state NULL). A feature is activated and placed in
the feature stack when the feature activator detects an
event that causes the feature to transition from the
NuLL state. Normally when a feature is activated it is
placed at the top of the feature stack. However, this
may not always be the case, as there may exist certain
high-priority features (such as 911) which must remain
at the top of the feature stack despite not being the
most recently activated feature. When a feature deac-
tivates (returns to the NULL state) it is removed from
the feature stack and returned to the feature activator,
which may activate it again at a later time. The basic
service should always be the first feature to activate, as
well as the last feature to deactivate.

A feature F can be activated in one of several ways:

e if a token falls off the bottom of the feature stack
and feature F' has a transition from its NULL state
on the corresponding Token event. (This composi-
tion rule implies that active features have higher-
priority access to input data than inactive fea-
tures.)

e if an active feature requests a state transition and
feature F has a transition from its NULL state
on the corresponding StateTransitionRequest event

(See Section 2.3.3).

e if a sibling feature in another feature stack con-
trolled by the same agent makes a state transition

and feature F has a transition from its NULL state
on the corresponding Parallel event.

Before a feature can activate, its activation must be
approved by all currently-active features. Section 2.3.3
describes this in more detail.

2.2.2 Token Queues

Since it is possible for a feature to output more than
one token during a state transition, many tokens may
be traveling through the feature stack at any one time.
In order to impose a deterministic priority on the re-
ception of tokens in a feature stack, each feature is
provided with two input queues: one which accepts
downward-moving from above, and one which accepts
upward-moving tokens from below. Tokens may not
pass each other in the feature stack, and must maintain
their order in the queues. A token is only accepted from
a queue if all lower-level queues in the feature stack are
empty. When a feature accepts a token from one of its
neighboring features (i.e., from one of its input queue)
but has no rule specifying a state transition from its
current state on the reception of that token, the token
is passed to its other neighbor.

2.2.3 State Transition Verification

Because higher-level features have priority over a fea-
ture at level z, the feature at level z much ask permis-
sion of all higher-level features before making a state
transition. A higher-level feature has the ability to per-
mit, modify or disallow a state transition of a lower-
level feature.

When a feature wants to make a state transition, a
corresponding StateChangeRequest event is generated
and passed from the top of the feature stack down to
the feature making the request. StateChangeRequest
events have priority over Token events (see Section
2.3.5); they bypass all tokens in token queues and are
accepted immediately by intercepting features. An in-
tercepting feature may either forward the StateChange-
Request unchanged, pass on a modified StateChange-
Request, or pass on nothing, in effect disallowing the
state transition®. As with tokens, StateChangeRequest
events from one neighboring feature are passed to the
other neighbor if they do not activate a transition from
the current state.

4Note that when a state transition in feature f is triggered
by the reception of a StateChangeRequest from a feature g, it too
must have its state transition approved by features of higher-
priority than itself. This happens in a recursive manner until all
StateChangeRequest events have been resolved. Since f is above
g in the feature stack, fewer features have priority over f; thus,
the recursion will eventually terminate.

When a StateChangeRequest reaches the feature that
originally generated the request, the received State-
ChangeRequest event is compared against the event
that was originally generated. If the StateChangeRe-
quest has been modified, a new StateChangeRequest is
generated so that the above features may approve the
modified state transition®.

When an unmodified StateChangeRequest event is re-
turned to the requesting feature, the feature activator
is queried to see if any new features wish to activate
on such an event. If so, an attempt is made to ac-
tivate the feature. Like all state transition attempts,
the activation of a feature must be approved by all
higher-priority features, which in this case is the set
of all active features. The newly activated feature is
usually pushed onto the top of the feature stack by
default; if not, the configuration being analyzed must
specify that the newly activated feature be inserted into
the feature stack somewhere above the feature whose
StateChangeRequest activated the new feature. This
way, the newly activated feature has the ability to per-
mit, modify, or disallow the StateChangeRequest that
activated the feature. For example, if the Terminating
Call Model (TCM) attempts a state transition from
HUNTINGFACILITY to EXCEPTION because the agent’s
line is busy, Call Waiting (CWT) will intercept the
state transition and try to establish the call on a sec-
ond line; if CWT can establish the call, then it will
have effectively prevented the very state transition in
the call model that activated the feature.

2.2.4 Priorities of Events

In order for a feature stack to be deterministic in na-
ture, the following priorities are imposed:

e All StateChangeRequest events are resolved first,
recursively.

e Tokens waiting in queues are then accepted.

e Signals from sibling features (represented by Par-
allel events) are then resolved.

e Finally, internal decisions (represented by Internal
events) and tokens from the environment are ac-
cepted.

5Tt is possible in the current model for an infinite loop to oc-
cur if two features are trying to modify a StateChangeRequest of
a common lower-priority feature at the same time. One feature
may reverse the modifications of the other, which then gets in-
tercepted by the first again and re-modified, etc. At present we
don’t detect such infinite loops. However, we could model our
algorithms to maintain enough information to detect these types
of interactions.

3 Reachability Analysis

The verification and analysis that is currently per-
formed by the composition algorithm can be divided
into three classes — syntax checking, verification of
structural properties of specifications, and detection of
feature interactions.

3.1 Feature Interaction Detection

Once their syntax and structure have been checked, fea-
ture specifications may be composed together to form
a feature stack specification. Subsequently, two fea-
ture stack specifications may be composed to form a
call specification. During composition, each reachable
state is tested to determine if a feature interaction can
occur at that state. These tests are based on state
information only (i.e., the current state, the heads of
the input queues, and the contents of the allocated-
resources list). At present, the composition algorithm
can detect five types of feature interactions.

data consumption A data-consumption interaction
occurs when one feature consumes input data that
another feature is waiting for. Such interactions
are detected when multiple features are ready to
operate on the same input event and the higher-
priority feature consumes the input event, thereby
preventing the lower-priority feature from ever see-
ing the input. Data-consumption interactions are
resolved by the prioritization of features on the
feature stack. Warnings about data-consumption
interactions are used by feature designers to ver-
ify desired data consumptions and to reveal re-
solved, undesired data consumptions which need
to be documented.

data modification A data-modification interaction
occurs when one feature modifies the value of a
token that is subsequently used by a second fea-
ture. The feature’s specification must explicitly
indicate when a feature modifies an output token
(or a data field in an output token) by annotat-
ing the output event with a prime (’). The com-
position algorithm replaces prime (’) annotations
with information about which feature is making
the modification and, if applicable, which of the
token’s data fields is being modified. Informa-
tion about data modifications is cumulative. If
the modified token is later intercepted and used
by another feature, the interaction is detected and
a warning is given, providing the feature designer
with the token’s modification history. As with
data-consumption interactions, the prioritization
of features resolves data-modification interactions;

warnings simply notify the feature designer of the
resolved interaction.

resource contention Any attempt by a feature to ac-
quire an instance of a resource beyond the speci-
fied capacity of that resource is detected as a re-
source contention interaction. Such interactions
are detected by comparing the number of each re-
source already allocated to the agent (as listed in
the agent’s Resource lists) with the specified ca-
pacity of each resource. Resource contention is
also reported if the set of composed features release
more instances of a resource than they acquired.

data loss A data loss interaction occurs when a token
is passed down through a feature stack and eventu-
ally falls off the bottom of the stack. This type of
interaction typically indicates that one feature has
made an invalid assumption about the readiness of
another feature to accept a particular token. Data
loss interactions are detected when the composi-
tion algorithm attempts to enqueue the token to
an nonexistent output queue below the base ser-
vice.

control interaction Sometimes one feature will at-
tempt to control the behavior of another feature
by forcing the second feature to undergo a par-
ticular state transition. A control interaction oc-
curs when the second feature is not in the expected
state at the time its ‘new orders’ are received; it
also occurs if the requested transition does not ex-
ist. Since the composition algorithm cannot gen-
erate the next state, the algorithm must abort. A
control interaction is the only feature interaction
that causes the composition algorithm to abort.

3.2 Experience

A previous paper [3] described four feature interactions
that we wanted to eventually be able to detect auto-
matically. This subsection describes our experiences
in trying to detect three of these interactions: a data
modification, a data consumption, and a resource con-
tention interaction. More complete descriptions of the
results of these case studies and the feature specifica-
tions used can be found in [9, 10].

3.2.1 Data Modification

There is a known, desired, data-modification interac-
tion between telephony features Calling Number Dis-
play (CND) and Calling Number Display Blocking
(CNDB). When a call is being a initiated, the caller’s
OCM will send a CallRequest token to the receiver’s
TCM. Feature CND operates on top of a TCM; its pur-
pose is to extract the caller’s telephone number from

the CallRequest token when the token is received by
the TCM. Feature CNDB operates on top of an OCM;
its purpose is to modify the CallRequest token so that
feature CND will not extract and display the caller’s
number. When the caller’s and callee’s feature stacks
are composed, the following data modification warning
is reported.

Warning: Feature Stack [CND/TCM] accepted token
t:CallRequest!origin which was modified
by [CNDB/0OCM]

That is, a data modification is detected when the CND
feature attempts to extract the caller’s number from
the CallRequest token and finds that the token as been
modified (by the CNDB feature) to prevent the display
of the number.

3.2.2 Data Consumption

There are several well-known, undesired interactions
between features Three- Way Calling (3WC') and Call
Waiting (CWT). The agent can create a FlashHook to-
ken by pressing the receiver hook quickly, as opposed
to pressing the receiver hook long enough to hang up
the phone. In CWTS®, the |4 FlashHook event is used
to switch between the two CWT calls. In 3WC, the
|} 4 FlashHook event is used initially to activate the fea-
ture; it is also used to join the three parties in a con-
ference call once the call to the third party has been
established. A data consumption interaction occurs if
both features are ready to handle a |} 4 FlashHook event,
and one feature receives the token without forwarding
it to the other feature.

If 3WC is used to establish a call to a third party
and CWT is activated in the middle of this call, the
composition algorithm detects 12 data-consumption in-
teractions, 5 of which are unique’:

Features (CWT,3WC) accept "FlashHook"

in state [Decision/Private/Active]
Features (CWT,3WC) accept "FlashHook"

in state [HeldCall/Private/Active]
Features (CWT,3WC) accept "FlashHook"

in state [Active/Private/Active]
Features (CWT,0CM) accept "Disconnect"

in state [HeldCall/Private/Active]
Features (CWT,0CM) accept "Disconnect"

in state [HeldCall/Private/ReleasePending]

8The following interactions involving the |} 4 FlashHook event
only occur when the agent is using a simple telephone that does
not have special buttons for CWT and 3WC.

“The 7 warning messages not shown are duplicates of the
5 messages presented above. Interactions are detected between
pairs of features, and these interactions can occur while the third
feature is in various states. Since the composed state (consisting
of the three features’ current states) is different in every case, the
composition algorithm issues a warning message.

As expected, several data consumption interactions in-
volving the |} 4FlashHook event are detected between
CWT and 3WC. In addition, several other data con-
sumption interactions are detected between CWT and
the Originating Call Model (OCM). In CW'T, one call
is always on hold. If the agent forgets about the held
CWT call and hangs up (with a Disconnect token), then
CWT will ring back the agent. That is, CWT will con-
sume the Disconnect token and try to re-establish the
call. Meanwhile, OCM is waiting for a {}4Disconnect
to terminate the call. Thus, the interactions between
CWT and OCM are desired; the consumption of the
Disconnect token is specifically designed to delay the
termination of the call.

3.2.3 Resource Contention

3WC and CWT features both require the user of a piece
of hardware known as a bridge, but there is only one
bridge available to each telephone. If an agent attempts
to use both features at the same time, there will be a
resource contention interaction.

The bridge is requested by the CWT sub-feature that
operates on the new incoming call that the feature sets
up. In 3WC, the bridge is requested by the sub-feature
that initiates a call to the third party. If these two
sub-features operate on the same feature stack, the fol-
lowing resource contention warning is reported when
the features and call model are composed into a fea-
ture stack.

Resource Contention: [Null/Active/Active] =>
[Holding/Active/Active] needs 2 bridges

If the sub-features resides on parallel feature stacks,
then the resource contention would be detected when
the calls are composed into call systems.

4 Related Work

A number of other researchers are investigating the fea-
ture interaction problem.

Researchers from PTT Telecom, PTT Research, and
Kokusai Denshin Denwa Co., Ltd. (KDD) propose
template formats for specifying features. Included
in the templates are either extended finite state ma-
chine specifications (PTT) or message sequence charts
(KDD). In the PTT approach, the extended finite state
machines of two features are manually inspected to de-
termine if their lifetimes can overlap (thereby affecting
each other’s control flow), if one feature uses data mod-
ified by the other, or if they use limited resources [7].
In the KDD approach, the message sequence charts of
two features are manually composed, and feature in-
teractions are revealed during this composition [12].

The proposed template formats are extremely expres-
sive, and one can argue that all the information needed
to detect an interaction can (although in practice may
not) be in stated in the features’ specifications. How-
ever, automated detection of feature interactions is pre-
ferred, given the number of features that need to be
compared.

SDL [1] and LOTOS [2, 5] are often used to spec-
ify communication protocols. Both have an execution
model, for which reachability graph generators and sim-
ulators can be built. Furthermore, one could use model
checking techniques to verify global properties (e.g.,
safety and liveness properties) with respect to the spec-
ification’s reachability graph.

Our approach is similar to the building blocks ap-
proach proposed by Bellcore [8]. Service and fea-
ture specifications are building blocks that are fitted
together according to architectural constraints. The
architectural constraints define communication flows
among the specifications, as opposed to a flat compo-
sition of parallel LOTOS specifications. Another ad-
vantage is that the configuration of the composed sys-
tem can change over time (due to the activation and
deactivation of features), unlike configurations of SDL
specifications.

5 Conclusion

As indicated by the title, this paper reports work in
progress. At present, we have implemented an efficient
reachability graph generator that composes features
into feature stacks and composes feature stacks into
calls. We have also implemented interaction-detection
algorithms that test the state information of reachable
states to determine if an interaction can occur. Finally,
we have used the above algorithms to automatically de-
tect several types of interactions.

In the immediate future, we intend to implement the
third stage of composition: the composition of calls
into call systems. This will complete the reachability
graph generator and allow us to analyze complete call
configurations.

A longer term goal is to allow features to raise asser-
tions during their execution. Assertions are properties
about the call that the feature expects to hold, even af-
ter the feature is deactivated. For example, telephony
feature Originating Call Screening (OCS) is activated
when a call is initiated. Its purpose is to compare a di-
aled number against a list of invalid numbers. If the di-
aled number passes the test, then the OCS feature will
allow the call to proceed and will terminate normally.
However, the feature assumes that the call eventually
established will be to the number that passed the OCS
test, and this assumption can be invalidated by features

than change the destination of the call (e.g., Call Trans-
fer and Call Forward). If features raise assertions, then
conflicts between assertions raised by different features
could be detected and reported.

Acknowledgements

We would like to thank Kenneth Braithwaite for
his initial work on the architectural model, specifica-
tion notation, and feature interaction detection algo-
rithms; and for his comments and suggestions regard-
ing changes to the model and notation, which we made
to facilitate the generation and analysis of the reacha-
bility graph.

We greatly appreciate the time Greg Utas has taken
to explain the architecture of the DMS-100 telephone
switch and the many ways in which feature interactions
can occur (and can be resolved).

We would also like to thank Greg Utas, Andre Vellino
and Jack Dyment for their constant encouragement and
support of this project.

References

[1] F. Belina and D. Hogrefe. “The CCITT-
Specification and Description Language SDL”.
Computer Networks and ISDN Systems, 16:311—
341, 1989.

[2] R.Boumezbeur and L. Logrippo. “Specifying Tele-
phone Systems in LOTOS”. IEEE Communica-
tions, 31(8):38-45, August 1993.

[3] K. Braithwaite and J. Atlee. “Towards Automated
Detection of Feature Interactions”. In Proceedings
of the Second International Workshop on Feature
Interactions in Telecommunications Software Sys-
tems, 1994 (to appear).

[4] R. Brooks. “A Robust Layered Control System for
a Mobile Robot”. IEEE Journal of Robotics and
Automation, RA-2:14-23, April 1986.

[5] M. Faci and L. Logrippo. “Specifying features and
analysing their interactions in a LOTOS environ-
ment”. In Feature Interactions in Telecommunica-
tions Systems, pages 120-151, May 1994.

[6] A. Flynn, R. Brooks, and L. Tavrow. Twilight
Zones and Cornerstones: A Gnat Robot Double
Feature. Technical Report A.I. Memo 1126, Arti-
ficial Intelligence Laboratory, Massachusetts Insti-
tute of Technology, 1989.

[7] E. Kuisch, R. Janmaat, H. Mulder, and

I. Keesmaat. “A Practical Approach to Service In-

[10]

[11]

[12]

teractions”. IEEE Communications, 31(8):24-31,
August 1993.

F.J. Lin and Y.-J. Lin. “A building block approach
to detecting and resolving feature interactions”. In
Feature Interactions in Telecommunications Sys-
tems, pages 86119, May 1994.

K. Pomakis. Reachability Analysis of Feature In-
teractions in Service-Oriented Software Systems.
Master’s thesis, Department of Computer Science,
University of Waterloo, 1995.

K. Pomakis and J. Atlee. “Reachability Analy-
sis of Feature Interactions: A Progress Report”.
Technical Report CS-96-21, Department of Com-
puter Science, University of Waterloo, Waterloo,

ON Canada., May 1995.

G. Utas. “Feature Processing Environment”, De-
cember 1992. Presented at the International Work-
shop on Feature Interactions in Telecommunica-
tions Software Systems.

Y. Wakahara, M. Fujioka, H. Kikuta, and H. Yagi.
“A Method for Detecting Service Interactions”.
IEEE Communications, 31(8):32-37, August 1993.

