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Abstract

A feature in the context of a service-oriented software system is a program module that is
added to a basic service in order to add functionality. An example of this type of system
is the telephone system, where customers can subscribe to add-on telephony features such
as Call Waiting, Three-Way Calling, and Call Number Display. An inherent problem
of such a system is the feature interaction problem. A new feature interacts with an
existing feature if the behavior of the existing feature is changed by the presence of the

new feature.

This thesis describes an approach to detecting feature interactions during the require-
ments phase of feature development. The approach involves specifying features in the
context of a layered state-transition machine model that prioritizes features and avoids
interactions due to non-determinism. A tabular notation for specifying features has been
developed. These specifications are composed incrementally, and a reachability graph of
the composite system is generated. This thesis demonstrates how reachability analysis
has been used to automatically detect six types of feature interactions, with an emphasis

on telephony features.
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Chapter 1

Introduction

A service-oriented software system is a software system whose purpose is to provide a set
of services to a user or set of users. Further definitions employed by this thesis are as

follows:!

o A service 1s some functionality provided to the user by a software system. Services
can be used to enhance or extend other services. For example, the telephony service

Call Waiting extends the basic POTS (Plain Old Telephone Service) telecommu-

nication service.

o A feature is a component which provides part or all of the functionality of a service.

Thus, each service of a service-oriented software system is modeled as one or more inter-
acting features. In cases where a service 1s modeled as exactly one feature, the two terms

may be used interchangably.

Two features interact with each other if the behavior of one feature is changed by the

presence of the other. A key problem in software enhancement is how to add features

!Note that these definitions may differ from those employed by other papers.
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to a system without disrupting the services already provided. Note that features, by
definition, interact: at the least, a new feature is expected to interact with those features
and /or services whose functionality is intentionally modified by the new feature. Thus,
the problem of detecting feature interactions is twofold: we want to validate specified

interactions and detect unintended interactions.

There are two possible approaches to the feature-interaction problem that can be
exercised at the requirements phase of feature development. The first approach is to
specify the features with respect to an architectural model that by design avoids feature
interactions. The second is to detect feature interactions by analyzing the formal speci-
fication of the system. [1]. The approach discussed in this thesis is a mixture of both of

the above approaches.

Currently the problem of analyzing formal specifications in search of feature inter-
actions 1s usually tackled by inspections and walkthroughs of the feature specifications,
often coupled with testing of the implementations themselves. Such manual proof tech-
niques are based on the inspection of state transitions. However, manual proofs can be
tedious and are inevitably susceptible to human error. This is especially true of larger
systems; as the number of services in a system grows, and, more importantly, as the num-
ber of service providers for a particular system grows, such manual techniques become
unwieldy. For one thing, it becomes unfeasible to cognitively consider the effects of a
new feature when combined with arbitrary combinations of existing features. Also, it is
unlikely that third-party developers will be intimately familiar with the base system and

existing features. Thus, automated analysis of feature interactions becomes essential.

This thesis proposes a specification notation for features that is designed to cap-
ture only the functional behavior of features. Thus, features can be described with this

language during the requirements phase of feature development.
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Several classes of feature interactions are due to non-deterministic execution of con-
current features. This thesis also proposes an execution model that resolves such inter-
actions by prioritizing features and forcing a total ordering on the occurrence of features’
actions. Even though many interactions can be resolved by prioritizing features, it is still
desirable for feature designers to be aware of the interactions and to document them.
As stated above, automated detection of feature interactions is essential: if a system
has N features, then there are N(N — 1)/2 possible pairs of features that need to be
checked. This thesis describes a set of tools that can be used to incrementally compose

specifications and to search the reachability graph for certain classes of interactions.

It is important to note that the tools” interaction-detection algorithms test states as
opposed to paths in the reachability graph. This means that once a reachable state is
tested, it can be discarded by the algorithm if it is not important in future phases of
composition. This reduces the size of the reachability graphs at each incremental stage

of composition.

Many of the examples presented in this thesis are taken from specifications of tele-
phony systems. However, the principles discussed are general enough that they should

be applicable to a wide class of service-oriented software systems.

The following chapter discusses the feature interaction problem by examining other
proposed solutions. A general overview of reachability graph generation as it applies to
feature interaction detection is also given. Chapter 3 describes a notation for specifying
requirements of features and an existing architectural model, which we have adopted,
that imposes a priority on features. Chapter 4 describes an execution model, based on
the architectural model, for constructing the composition of a set of features. Chapter 5
defines the classes of feature interactions that can be detected automatically, using ex-
amples of interactions among telephony features. The thesis concludes with a discussion

of open issues.



Chapter 2

Related Work

2.1 Other Approaches

There have been several approaches to the feature-interaction problem. This section
describes some of these approaches as they relate to the three major areas of the feature-
interaction problem: specification of features, composition of specifications, and detection

and resolution of feature interactions.

2.1.1 Specification of Features

It is necessary to specify features in a concise and consistent manner so that the spec-
ifications of features can be composed and analyzed. A specification language designed
for this purpose must have the ability to model enough information about features so
that the detection of a large class of feature interactions is possible. Generally, the num-
ber of different types of interactions that can be detected is directly proportional to the

expressibility of the specification language. However, a specification language should
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be simple enough that the feature designer is not overwhelmed. Also, a specification

language should be formal enough to lend itself towards automated analysis.

Several standard languages already exist for the purpose of formally specifying the
behavior of telecommunications systems. ESTELLE, LOTOS, SDL and Promela are ex-
amples of such languages. All of these languages are based on labeled state-transition
systems, systems whose transitions between states are activated by the occurrence of the
labeled events. These languages all have similar expressibility, and can model sequen-
tial behavior, choice, concurrency and non-determinism in an unambiguous way. The
largest distinguishing factor between the languages is in the way data is represented. For

example, SDL is a graphical language, whereas ESTELLE’s syntax is similar to Pascal.

An advantage of using a standard specification language is that, in most cases, tools
already exist for analyzing and composing such specifications. For example, Faci and
Logrippo [1] of the University of Ottawa use LOTOS to specify features in their model,
and use a verification tool called the Interactive System for LOTOS Applications (ISLA)
in order to verify the features. Similarly, Combes and Picken [5] use the GEODE/FV
verification tool to verify their SDL specifications. Lin and Lin [9] of Bellcore use Promela
as their specification language, and verify their specifications with the SPIN verification
tool. In fact, they have built an automated verification environment called WHEEL

which operates on top of SPIN.

Although the use of pre-defined specification languages allows for powerful verification
methods using existing tools, it limits the choice of model. Therefore, some approaches
to the feature-interaction problem define their own specification language. For exam-
ple, Ohta and Harada [10] of ATR Communication Systems Research Laboratories have
developed a language called STR (State Transition Rule) for the purpose of describing
features in a system. In STR, a state primitive can either define the behavior of a termi-

nal (e.g. idle(P)) or a set of behaviors among multiple terminals (e.g. ringing(P,Q)). STR
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allows each feature to be modeled as a set of state transition rules of the form S, E — N,
where S and N are sets of state primitives and F is an event. The rule specifies that if
E occurs and S C G, where G represents the set of state primitives that are currently
true in the system, then N is to be applied to the global state G (by removing S from
G and adding N). The specification of the system is then merely the union of the state
transition rules describing each of the features in the system and a set of state primitives

representing the initial global state.

2.1.2 Composition of Specifications

One major obstacle in the analysis of feature interactions is that the number of interac-
tions (i.e., the number of combinations of features that should be examined) increases
exponentially with the number of features in the system [2]. Kimbler et al. [8] of PIEN,
A Eurescom! project, attempt to tackle this problem by eliminating all combinations of
features that can never lead to any interaction, and only analyzing remaining combina-
tions. This is achieved by categorizing all features in a system, where two features are
in the same category if they have similar functionality. If two categories A and B have
nothing in common with each other, then a feature in A cannot interact with a feature in
B. This drastically reduces the number of combinations to be analyzed. Kimbler et al.
reduce the problem set even further by analyzing the roles of the services to which the
features belong. A given combination of features F'1 and F2 can cause an interaction if
and only if there exist two services S1 and S2 such that F'1 belongs to S1, F'2 belongs
to S2, and both S1 and 52 can be active at the same time. As a telephony example, a
Hold feature could not possibly interact with a 911 feature, since these two services are

defined to be mutually exlusive.

!Eurescom is a joint research initiative of several European public network operators.
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Lin and Lin [9] attempt to reduce the complexity of composed telephony specifica-
tions by performing incremental composition. This not only reduces the complexity of
each stage of composition, but allows packages of precomposed subsystems to be used
repeatedly without the need for recomposition. Lin and Lin incrementally compose their
Promela specifications using a building block approach. This involves three levels of
composition: the composition of Basic Feature Contexts (BFCs) from Basic Call Models
(BCMs), the composition of Feature Contexts (FCs) from BFCs, and the composition
of a system of features from BFCs and feature specifications. Five BCMs have been
identified: originating user’s behavior (ORIG), terminating user’s behavior (TERM),
originating basic call model (OBCM), terminating basic call model (TBCM) and sys-
tem environment (SYS). These BCMs have been composed into three common BFCs:

originating, terminating and two-party?.

To illustrate this incremental approach, the composition of the originating and termi-
nating BFCs are shown in Figure 2.1, the FCs of features Call Waiting (incoming call)
and Call Forwarding on Busy are shown in Figure 2.2, and the compositions of these two
features with their FCs are shown in Figure 2.3. The arrows in these figures represent
interaction between the corresponding entities. The dashed rectangle encapsulating the
two TERMs in the Call Waiting FC (Figures 2.2 and 2.3) indicates that both TERMS
are modeling the same user and are therefore merged. Similarly, the double rectangle
encapsulating the SYS BCM in the Call Forwarding on Busy FC (Figures 2.2 and 2.3)
indicates the merging of two separate SYS BCMs (from the two previously unrelated
FCs).

The BFCs in Lin and Lin’s approach are specified in terms of options. Through
options, the state space of a BFC is decomposed into a number of disjoint subspaces,

providing finer control over the complexity of the model. For example, the terminating

2The two-party BFC is merely a combination of the originating and terminating BFCs.
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Originating BFC

ORIG

—_—

-

OBCM

—_—

-

SYS

Terminating BFC

SYS

—_—

-

—_—

TBCM TERM

-
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BFC has nine separate options which can be turned on or off, controlling which portions
of the state space should be included in the composition. If the user does not wish to
model cases where the line is busy, for example, he/she can disable the LINE_BUSY option,

reducing the size of the composed specification.

2.1.3 Detection and Resolution of Feature Interactions

Once feature specifications are composed into one large, composite specification, the
composite specification can be analyzed, and interactions between the features within can
be detected. For each specification language, it is necessary to define what constitutes
a feature interaction in specifications written in that language. Combes and Picken [5]
define the term feature interaction in the following way: Let Fy, Fs, ..., F, be feature
specifications (specified in SDL), let S be a software system (also specified in SDL), and
let S @ F; be the network obtained by adding feature F; to S. Also, let Py, Ps, ..., P,
be formulae expressing feature requirements in a suitable property language. A feature
interaction occurs when S @ F; satisfies P;, 1 < i < n, but S F1®...P F, does not satisfy
P;A...AP,. Although this method can be used to detect interactions between a number
of interacting features, Combes and Picken usually only consider features pairwise under

the assumption that most interactions involve only two features.

Lin and Lin [9] use the reachability-analysis tool SPIN to verify temporal logic as-
sertions of Promela specifications in a manner similar to Combes and Picken’s method.
When undesired feature interactions are detected, a feature manager, through which all
features must interact, i1s added to the system. The feature manager acts as an arbitra-
tor between BCMs and features, and enforces a manually derived resolution scheme over
all the features. Separation of concerns is poorly addressed with this method, as every

combination of features requires its own version of the feature manager.
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Ohta and Harada [10] use a different approach in their definition of a feature interac-
tion. They identify five types of interactions that can occur at the feature specification
design stage: deadlock, loop (a state for which there is no path back to the initial state),
non-determinacy, transition to an abnormal state, and duplicated terminology. The first
two types of interactions, deadlock and loop, are easily detected via standard finite-state-
machine techniques. If these types of interactions exist in the system, there are logical

problems with the finite-state machine which must be analyzed by hand.

STR, the language developed by Ohta and Harada, avoids certain types of nondeter-
minism by prioritizing transitions: if two rules S;, E; — N; and S;, E; — N; exist, where
E; = E; and both S; and S; are subsets of G with S; C S;, then N; is applied prior to Nj.
Non-determinacy exists when an applicable rule cannot be uniquely selected. Ohta and
Harada present an algorithm which detects non-determinacy by examining the global
set of rules in the system and searching for such situations. When such an interaction
1s detected, it can be resolved by asking the user to specify the priorities of competing
rules. The rule that is given higher priority is then modified, such that the set of current
state primitives S; is replaced by the union of the sets of primitives S; and S; of both

competing rules.

Transition to an abnormal state occurs when two features both have applicable rules,
but there exists no relation between the rules’ sets of current primitives. Only one rule
will be applied, and the next state of the feature with the non-applied rule will not be
reached. This can be detected by analyzing the changes to the global state resulting from
the application of such rules and comparing them to the states expected by the individual
features. Resolution of this interaction involves adding rules to the system whose current

state i1s equivalent to the disjunction of the current states of the two competing rules.

This model provides a straight-forward framework for detecting and resolving feature

interactions. One advantage of the model is that the individual features are described
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from the user’s viewpoint and thus are easy to conceptualize. However, the model fails
to address issues such as resource contention and data flow, both of which can be the
source of feature interactions during the specification design stage. Also, since resolution
of feature interactions involves additional rules that only exist when certain features are

combined, separation of concerns is poorly addressed.

The availability of flexible tools for detecting feature interactions is as at least as im-
portant as the model itself. Boumezbeur and Logrippo [1] have developed three separate
tools for analyzing their LOTOS-based specifications. The first tool performs step-by-
step execution of the specifications which allows the user to choose the next action to take
at point of execution. The second tool generates a symbolic execution tree of the system
which explores all the possible paths of the system. The third composes the features in
a system with respect to a user-supplied sequence of events and produces the execution

path taken.

2.2 Reachability Graph Generation

Most automated validation methods are based on exhaustive reachability analysis, which
focuses directly on reachable system states rather than indirectly on the transitions that
connect them. A reachability analysis algorithm generates and inspects all of the states of
a distributed system that are reachable from a given initial state. Due to synchronization
between the system’s components, the set of reachable states is often much smaller than
the cross product of the states of the individual features in the system. Therefore, it is

feasible to perform a full state space search on most systems of a reasonable size.® [7]

3For larger systems, partial search techniques become necessary, the simplest and most effective of

which is based on selecting a random subset of successor states to follow at each state. [7]
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Holzmann [7] describes a simple algorithm which performs reachability analysis based
on a full state space search. It is given in Figure 2.4. This algorithm recursively steps
through every reachable state in the system, checking each state for validity. An error is

reported for every invalid state encountered.

start() {

W = { initial_state } // work set: to be analyzed
A={} // previously analyzed states
analyze()

}

analyze() {
if W 1s empty
return
else
q = element from W
add q to A
if q is an error state
report_error()
else
for each successor state s of q
if s is not in A or W
adds to W

analyze()
delete q from W

Figure 2.4: Holzmann’s reachability analysis algorithm
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Let W be the working set of states to be analyzed. Holzmann [7] suggests retrieving
the elements from W in a first-in last-out (i.e. stack) order, since the size of W would
then be a function of the depth of the tree rather than the width which is likely to be
much larger. Also, such a depth-first search would allow easy construction of an execution

sequence of state transitions from the initial state at any point during the analysis.
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Model

3.1 Background

A large class of feature interactions is due to non-determinism: if two active features f
and g react to the same input from the user, which feature gets the input data first?
If feature f operates on the data first and g never sees the input, then the presence of
feature f alters the control-flow of feature g. Alternatively, if feature f operates on the
data first and g sees a modified version of the input data, then again the presence of f

may affect the behavior of feature g.

Before my studies at the University of Waterloo commenced, Ken Braithwaite and
Joanne Atlee began investigating the problem of detecting such interactions in an auto-
mated fashion [3]. They adopted a stack architecture (or layered architecture) of services
and features where each service is represented by one or more features in a stack. The
basic service (modeled as a stand-alone feature) resides at the bottom of the stack, and
the features are placed in a prioritized order above the basic service (see Figure 3.1).

Features within a stack communicate with each other by passing around messages called

14
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tokens. Tokens representing events from the agent (the user of the service) are input to
the top-level feature and flow down through the layers towards the basic service. Re-
sponses from the basic service similarly progress upwards through the layers towards
the agent. The feature at the top of the stack has top priority; it i1s the first feature
to operate on data entering the system and is the last feature to modify data that is
leaving the system. This prioritization of features effectively resolves interactions due to
non-determinism by explicitly specifying when a feature can operate on input and output
data. Databases, operating systems, and control software [4, 6] can be modeled using

stack architectures.

agent A agent B

A A

network |

Figure 3.2: A call

Communication protocols and telephony systems [12] can also be modeled using stack
architectures. However, due to the distributed nature of such systems, it is not sufficient
to model them with a single feature stack; hence, the model also includes calls: two
feature stacks (one for each agent) interacting via a communication link called a network

(see Figure 3.2). Tokens entering a stack originate from either the stack’s agent or the
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remote stack (via the network). Similarly, tokens leaving a stack are destined for either
the agent or the remote stack, but not both. An agent does not directly receive events
from the network. An event received from a network is passed down the feature stack
towards the basic service, which in turn may attempt to communicate the event to the

agent by passing it back up through the feature stack.

In order to address the issue of separation of concerns, a service which conceptually
spans a call must be modeled as two separate features, one for each feature stack. Each
feature operates in the context of a single side of a call, and communicates with the other
feature of the service through the network. This greatly reduces the complexity of the
specifications, and allows for incremental composition.

agent A agent B agent C

A A ‘ A

network |

network

Figure 3.3: A call system

Certain telephony services (for example, Three-Way Calling) allow an agent to engage
in two or more different telephone calls at the same time. Since a feature stack is

only capable of representing one end of a single call, such services require the agent
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to communicate with two or more feature stacks at a time (one for each call the agent
is engaged in). Services that involve more than one call in this manner are modeled
as separate features, one operating in each of the agent’s feature stacks affected by the
service. Tokens from the agent are passed to each of the agent’s stacks simultaneously
(see agent B in Figure 3.3). The individual features comprising the service communicate
via message passing, as illustrated by the shaded features in Figure 3.3. For example, an
activated Three-Way Calling service consists of two features, one for the feature stack of
the original call, and one for the feature stack of the new call to the third party. A set
of two or more calls that have a common agent is referred to as a call system. When a
single agent controls two or more feature stacks in this manner, those feature stacks are

considered to be parallel.

3.2 Tabular Specification Notation

Ken Braithwaite and Joanne Atlee developed a tabular notation for specifying features
in this model [3]. Although many of the details of this notation have changed from their
original form due to my research, the basic structure remains the same. I will present

the refined notation here.

A feature is specified in tabular form as one or more state-transition machines. Each
state-transition machine table consists of a number of rows, each of which specifies a
state transition, to be activated by the reception of some input event, from a current
state to a new state. A state transition may produce output events and may request
and /or release resources. Therefore, the basic structure of each row of such a table is as
depicted in Figure 3.4. Note that the only difference in structure between tables of this

form and standard state transition tables is the addition of a Resources field.

Tabular specifications for two basic telephony services exist: the Originating Call
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‘ State ‘ Input ‘ Output ‘ NewState ‘ Resources ‘

‘ current state ‘ input event ‘ output events ‘ new state ‘ resource requests/releases ‘

Figure 3.4: The structure of a row in a tabular specification

Model (OCM) models the originating end of a call, and the Terminating Call Model
(TCM) models the receiving end of a call. Many telephony features are designed to
operate on top of either an OCM or a TCM. Because the two call models accept and
output different data, a telephony feature that is designed to operate on top of either
basic call model may need to specified by multiple state-transition machines, where each
machine operates on top of one call model. Note, then, the following relationship between
services, features and state-transition machines: A service is modeled as one or more
features, while a feature is specified by one or more state-transition machines. Specifically,
a service must be modeled as more than one feature when it either spans a network
connecting two or more agents in a single call or when it spans two or more calls controlled
by a single agent, whereas a feature may need to be specified by more than one state-

transition machine if it is designed to operate on top of either basic call model.

Perhaps the best way to introduce the tabular notation is to provide an example.
Table 3.1 contains a specification of the behavior of the Call Waiting feature for the
incoming call that activates the feature. The single machine specifying this particular
feature modifies a TCM since the incoming call is necessarily originated by another
agent. Separate tables specifying the behavior of the feature for the original call (which
modifies either an OCM or a TCM , depending on whether the original call was initiated

or received by the agent) are not shown here (see the Appendix for these specifications).

In order to interpret a table such as the one in Table 3.1, one must understand the

meanings of the different types of input and output events specified within. Figures 3.5
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Input events:

|} atoken
|/ rtoken

} atoken
' rtoken

Jax*
Jr*

SlZ>fS2(6)

=+S(e)

:>fS

>event

A Token event — a token from the environment, either from the agent
(lla) or from the connection’s remote agent ({g) via the network,
that is being sent towards the basic service machine.

A Token event — a token from the basic service machine that is
being sent towards the environment, either to the agent ({}4) or the
connection’s remote agent (ffz) via the network.

A Token event — matches an arbitrary token from the environment,
either from the agent ({4) or from the connection’s remote agent
(Ir). All other state transitions from the current state have priority
over a state transition activated by receipt of an arbitrary token.

A StateChangeRequest event — notification that a lower-priority fea-
ture f (possibly the underlying call model) is requesting a state tran-
sition from S1 to S2, triggered by input event e. A feature can
modify the behavior of a lower-priority feature by intercepting the
feature’s state-transition notification and imposing a different state
transition on the feature.

An Activation event — notification that feature f (possibly the un-
derlying call model) has just activated by transitioning from NULL
to S due to the reception of event e.

A Parallel event — a signal from another feature of the same service
(operating on a parallel feature stack) indicating that the other fea-
ture has transitioned into state S. Such signals are only visible to
features modeling the same service.

An Internal event — a signal indicating the termination of internal
computation. This signal is only visible to the machine performing
the internal computation.

Figure 3.5: Notation for input events used in tabular specifications
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Output events:

token|) 4 — A Token event — a token sent from the feature towards the basic-
tokenll g service machine. The output token will be interpreted as being
from the environment, either from the agent ({4) or the connec-
tion’s remote agent ({z). If the output token is a modification
of a previously input token, then the output event will be primed

(e.g., token’l} 4).

tokent) 4 — A Token event — a token sent from the feature towards the environ-
tokenir ment, either towards the agent ({/4) or the connection’s remote
agent (1r). The output token will be interpreted as being from
the basic-service machine. If the output token is a modification
of a previously input token, then the output event will be primed

(e.g., token’{} 4).

< forward> — The input token or state-transition notification is forwarded to
the next level machine without alteration.

S1=,S2(e) — A StateChangeRequest event — the feature imposes a new state
transition from S1 to S2, triggered by input event e, in a lower-
priority feature f (possibly the underlying call model).

=45 — A Parallel event — a signal sent to other features of the same service
(operating on parallel feature stacks) indicating that the feature has
transitioned into state S. This may be implicit.

NewCall(OCM) -~ A NewCall event — instantiation of a new call stack, based on an
Originating Call Model (OCM). There is no NewCall(TCM)
event, as a feature cannot instantiate a TCM call stack if there
is no reciprocal originating end of the call.

Figure 3.6: Notation for output events used in tabular specifications
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and 3.6 list the types of events that may appear in a tabular specification. They are each

placed into one of six categories:

Token events are events which signal either the transmission or reception of a data item
(called a token). Some tokens carry no information other than their name, some
contain a single datum, and others are compound, having other tokens as compo-
nents. Tokens may be passed between neighboring features on the same feature
stack, between a feature stack and its associated agent, or between two feature
stacks that are linked together in a telephone call. Tokens always have a name, a
direction (up or down), a source and a destination. Tokens moving down the stack
are destined for the basic service; their source is designated as either the stack’s
agent ({4) or the feature stack at the remote end of the call (|z). For upward-
moving tokens, the annotation ({4 or {Ir) specifies the destination of the token,

while the source is assumed to be the basic service.

Internal events are events which indicate an internal decision made by a feature. For ex-
ample, when Call Waiting (CWT) is in state HUNTINGFACILITY, it must determine
whether or not hardware facilities exist to establish a connection (See Figure 3.1).
An Internal event can not be specified as an output event in the feature’s transition
relation; features are not allowed to know about and react to each other’s Internal

events.

Parallel events are signals passed between multiple features modeling a single-agent ser-
vice which spans multiple calls. It is through this type of event that a such features

can synchronize with one another.

StateChangeRequest events are events which indicate the desire of a lower-level feature
to change states. When a feature intercepts this event, it can either pass it on un-

changed; pass on a modified StateChangeRequest event (which must specify a valid
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state transition rule in the target feature); or pass on nothing, thereby disallowing

the state transition. These events are discussed in more detail in Section 3.3.3.

Activation events are events which indicate that a feature has transitioned from the NULL
state and therefore has activated. Events of this type exist so that one feature can
activate based on the activation of another, and thus are only legal as the input
of activation rules (rules which specify a transition from NULL). An appropriate

Activation event is implicitly generated every time a feature activates.

NewCall events are events specifying the creation of a new feature stack (i.e., a new call
based on an Originating Call Model) on behalf of the agent. NewCall events are

only valid as output events in a feature’s transition relation.

Note that there are two methods by which a feature can affect the operation of the
underlying basic service. One method is to generate tokens on behalf of either the agent
or the remote stack; these tokens are passed down the feature stack towards the basic
service and are expected to cause the basic service to change state. The second method
is to circumvent certain state transitions in the basic service and replace them with new
state transitions. In fact, a feature can affect the operation of any lower-level feature in

this way.

A state transition may affect resource allocation. Notation +resource specifies a
request for an instance of resource, while —resource specifies the release of an instance
of resource. As we will see in Section 5.3.4, modelling such information provides a

powerful mechanism for detecting resource contention interactions.

Although this thesis introduces the proposed tabular specification mechanism in a
more-or-less informal manner, we will for a moment consider the mechanism in a more

formal light. Let T be the set of all tokens that can be passed among features on the same
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feature stack; we define tn»T" to be the set of input events denoting the receipt of a token
t €T and outT to be the set of events denoting the output of a token ¢t €T'. Similarly, let
R be the set of state-transition requests made by the call models and features; we define
in R and out R to be the sets of events denoting the receipt or the output of a state change
request, respectively. For a given feature f, let S be the feature’s set of states, let I be
the feature’s set of internal signals, and let A be the set of currently allocated resources.

Then formally, a tabular specification T represents the feature’s transition relation:?

T:(SxAx(nTUimRUI))— (S xAxP(outT UoutR))

That is, 7 is a partial function from states, allocated resources and input events to states,
allocated resources and sets of output events. Note that sets T', R, and A will grow as new

tokens, state-transition requests, and resources are needed to implement new features.

3.3 Mechanisms of Operation

A feature is not a stand-alone entity; it must always be examined in the context of the
system in which it executes. For this reason, it is important to understand the mecha-
nisms through which features communicate with one another. Before I began my studies,
Ken Braithwaite and Joanne Atlee had only informally described such mechanisms [3].
A large part of my thesis work involved refining and formally specifying these mecha-
nisms. In particular, it was necessary to define the mechanisms so that the composition

of features behaves deterministically.

'In the relation definition below, P(s) represents the powerset of set s.
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3.3.1 Activation of Features

A feature can only affect the basic service if it is active. Features to which the agent
has subscribed but which have not been activated are not on the feature stack; inactive
features are managed by an entity called the feature activator. Every feature stack has
a feature activator which monitors the stack for events which may trigger the activation

of any of the features it manages.

In the initial configuration of a feature stack, all features, including the basic service,
are inactive. A feature is considered inactive if it is in the NULL state. When the feature
activator detects an event in the system that will cause one or more of the inactive
features to transition from its NULL state, it activates those features by passing the event
to them and placing them in the feature stack. Normally when a feature is activated it
is placed at the top of the feature stack. However, this may not always be the case, as
some high-priority features (such as telephony feature 911) must remain at the top of
the feature stack despite not being the most recently activated feature. When a feature
deactivates (returns to the NULL state) it is removed from the feature stack and returned
to the control of the feature activator, which may activate it again at a later time. It is
necessary to place features in the stack only after they become active and to remove them
once they deactivate in order to allow the ordering of features in a stack to change due
to the deactivation and reactivation of features. The basic service (i.e., basic call model)

should always be the first feature to activate, as well as the last feature to deactivate.

A feature F' can be activated in one of several ways:

e if a token falls off the bottom of the feature stack (i.e., reaches the basic call model
which then passes it on to the feature activator) and feature F' has a transition from
its NULL state on the corresponding Token event. This composition rule implies

that active features have higher-priority access to input data than inactive features.
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e if an active feature attempts to transition to a new state and feature F' has a
transition from its NULL state on the corresponding StateTransitionRequest event

(See Section 3.3.3).

e if another feature activates and feature F' has a transition from its NULL state on

the corresponding Activation event.

e if another feature of the same service in another feature stack controlled by the
same agent sends a Parallel event feature F' has a transition from its NULL state on

that event.

Before a feature can activate, its activation must be approved by all currently-active

features. Section 3.3.3 describes this in more detail.

3.3.2 Token Queues

Each feature i1s provided with two input queues: one which accepts downward-moving
tokens from higher-level features, and one which accepts upward-moving tokens from
lower-level features. A feature may output zero, one or multiple tokens during each state
transition. As a consequence, there may be many tokens traveling through the feature
stack at any one time. In order to impose a total ordering on the resolution of tokens,
a token is only accepted from a queue if all queues of lower-level features in the feature
stack are empty. Also, a token is only accepted from the upper queune of a feature (i.e.
the queue which accepts tokens passed down from higher-level features) if the the lower
queue of that feature is empty. One important implication of these rules is that input
tokens from the environment (which enter the top queue of the highest-level feature) are

not accepted until all other queues in the feature stack are empty.
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When a feature receives a token from one of its queues but has no rule specifying a
state transition from its current state on the reception of that token, the token is passed
to the next feature in the stack, or to the environment (the agent in the case of upward-
moving tokens and the feature activator in the case of downward-moving tokens) if there
is no next feature. In effect, this implies that all feature specifications implicitly contain

the following state transition rules for each state x, unless overridden explicitly:

‘ State ‘ Input ‘ Output ‘ NewState

z Uax < forward>
Ir* L forward>
T ax < forward>
T r* L forward>

88 |8 |8

Table 3.2: Implicit rules in feature specifications

3.3.3 State Transition Verification

Because higher-level features have priority over a feature at level z, the feature at level
z must ask permission of all higher-level features before making a state transition. A
higher-level feature has the ability to permit, modify or disallow a state transition of a

lower-level feature.

When a feature wants to make a state transition, a corresponding StateChangeRe-
quest event 1s generated and passed from the top of the feature stack down to the feature
making the request. StateChangeRequest events have priority over all other events (see
Section 3.3.5) and are resolved immediately. When a feature receives a StateChangeRe-
quest event, it may either forward the event unchanged to the next lower-level feature, it

may output a modified StateChangeRequest, or output nothing, in effect disallowing the
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state transition?. As with tokens, if a feature has no rule for specifying a state transition
from its current state on receipt of a particular StateChangeRequest event, the event is

passed to the next feature in the stack.

StateChangeRequest events are annotated with a boolean flag specifying whether or
not they have been modified. When a StateChangeRequest event is generated due to a
feature wishing to make a state transition, this flag is initially false. If a feature intercepts
this event and passes it on without modifying it, the flag remains false. However, if a
feature modifies the event to impose a different state transition on the requesting feature,
the modified event is marked as such. If a StateChangeRequest event for a lower-priority

feature is generated by a higher-priority feature, then the event is automatically marked

as modified®.

When a StateChangeRequest reaches the destination feature (usually the one that
originally generated the request), the received StateChangeRequest event is checked to
see if it has been modified. If it has, the modified StateChangeRequest event must be

approved (or reapproved) by all higher-level features®. This mechanism insures that a

2Note that when a state transition in feature f is triggered by the reception of a StateChangeRequest
from a feature g, it too must have its state transition approved by features of higher-priority than itself.
This happens in a recursive manner until all StateChangeRequest events have been resolved. Since f
is above g in the feature stack, fewer features have priority over f, and the recursion will eventually
terminate.

3In  practice, most imposed StateChangeRequests are modifications to outstanding
StateChangeRequests.

41t is possible in the current model for an infinite loop to occur if two features try to modify a
StateChangeRequest of a common lower-priority feature at the same time. Each feature may reverse the
modifications of the other. At present the algorithms I have developed don’t detect such infinite loops.
However, they could be expanded to maintain enough information to detect these types of interactions.
For example, if a history of pending StateChangeRequests were kept, duplicate entries would indicate

such loops.
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feature will never make a state transition that a higher-priority feature is specified to

disallow.

When an unmodified StateChangeRequest event reaches the destination feature, the
feature activator is queried to see if an inactive feature wishes to activate on such an event.
If so, an attempt is made to activate the feature. Like all state transition attempts, the
activation of a feature must be approved by all higher-priority features, which in this case
is the set of all active features. The newly activated feature is usually pushed onto the
top of the feature stack by default; if not, the configuration being analyzed must specify
where the newly activated feature is to be inserted into the feature stack (but its location
must be above the feature whose StateChangeRequest activated the new feature). Once a
feature is activated by a StateChangeRequest event, it becomes part of the state transition
verification cycle and must forward the StateChangeRequest event onwards if it wishes to
activate unobtrusively. This way, the newly activated feature has the ability to permit,
modify, or disallow the StateChangeRequest that activated the feature. For example, if
the Terminating Call Model (TCM) attempts a state transition from HUNTINGFACILITY
to EXCEPTION because the agent’s line is busy, Call Waiting (CWT') will intercept the
state transition and try to establish the call on a second line; if CWT can establish the
call, then it will have effectively prevented the very state transition in the call model
that activated the feature. Note that this mechanism allows more than one feature to
activate on a single StateChangeRequest event. If a feature unobtrusively activates on a
StateChangeRequest event, the event will once more percolate down through the feature
stack and reach the destination feature, at which point the feature activator will be

queried again.
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3.3.4 Triggering of Internal Events

When an Internal event is triggered within a feature, it typically results in a transi-
tion to another state. However, since higher-priority features have the ability to deny
state transitions, the triggering of an Internal event may not result in a transition to
another state. Once an Internal event has been triggered, no other Internal events can
be triggered within that feature until a state transition has been made. For exam-
ple, if the TCM in state HUNTINGFACILITY determines that the necessary hardware
facilities do not exist by triggering the internal >Busy event, but a higher-priority fea-
ture (e.g., CWT) disallows the state transition into EXCEPTION, then TCM stays in
state HUNTINGFACILITY. However, internal events >FacilityFound and >Busy ef-
fectively become disabled because the internal processing that results in either of those
events 1s done. Transition out of state HUNTINGFACILITY is now limited to receiving
a Token event, receiving a Parellel event, or receiving a StateChangeRequest event (e.g.

(HUNTINGFACILITY=> 7¢; PRESENTING CALL(>FacilityFound)).

3.3.5 Priorities of Events

To ensure a deterministic execution of features in a feature stack, call or call system, the

following priorities among events are imposed:

e All StateChangeRequest and Activation events are resolved first.

e Tokens waiting in queues are then processed. A feature will only accept a token
from a queue when no lower-level features have tokens in their queues. If a feature
has tokens in both of its input queues, it will accept upward-moving tokens from

the bottom queue first.

e Next, network tokens (from remote feature stacks) are resolved.
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e Signals between multiple features modeling a single-agent service which spans mul-

tiple calls (represented by Parallel events) are then resolved.
e Finally, internal decisions (represented by Internal events) and tokens from the agent

are accepted.

Section 4.2 discusses the relevance of these priorities to the different stages of com-

position during reachability analysis.
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Composition of Specifications

In order to detect interactions between features, it is necessary to compose their specifi-
cations together. Since feature specifications have finite structure and accept finite sets
of input, it is possible to generate finite reachability graphs of feature stacks, calls and
call systems (See Section 2.2). Analysis of information flow during the generation of a
reachability graph can reveal a large class of feature interactions in the system being

composed.

4.1 ASCII Representation of Specifications

It is necessary to transform the tabular specifications of features into computer-readable
input so that they may be used as input to the tools described in Section 4.3. Transforma-
tion in the other direction is also desirable, since the composite specifications generated
are expressed in the same language as the component features. Therefore, a one-to-one

mapping between tabular specifications and ASCII representations of the specifications

has been defined.

33
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4.1.1 Structure

Each state transition machine of which a feature is composed is specified in a separate
ASCII file. In order to provide coherent feedback to the user of the tool, each specification
is given a distinct, descriptive name. This name must appear as the first non-empty line
in the file. The rest of the file is used for specifying the state transition rules of the
feature, one rule per non-empty line. An ASCII-specified state-transition rule is of the

form:

state input output-list new-state [resource-allocation-list]

As the brackets indicate, the resource-allocation-list field is optional. If it is omitted, an
empy list is assumed. Any amount of whitespace can be used to separate the elements.
The ‘#’ character 1s used to denote a comment; any text appearing after this character

to the end of the line is ignored by the tool performing the analysis.

Figure 4.1 shows the ASCII representation of the feature CWT for an incoming call
(shown in tabular form in Table 3.1). The specifications of feature stacks, calls and call
systems that are generated by the tools are also expressed in this manner, albeit not

formatted and indented for human readers.

The following is a description of the syntax of such specifications.

4.1.2 Hierarchical Names for Specifications and States

The name of a feature specification can consist of any number of printable non-whitespace
characters except for ‘[’, ‘1" and ‘/’. For example, we use names ‘3WC’ and ‘CWT’ for
features Three-Way Calling and Call Waiting, respectively. Names of higher-order spec-

ifications such as feature stacks, calls and call systems retain the hierarchical structure of
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the specifications: characters ‘[’ and ‘]’ are used to indicate levels of composition, and
character ‘/’ is used to separate the names of component specifications at the same level.
For example, the name ‘[[A/B/C]/[D/E]]’ represents a call specification containing the
feature stacks ‘[A/B/C]’ and ‘[D/E]’. At the feature stack level, the names of the features
within are ordered with the name of the top (highest priority) feature first, followed by

the name of the feature with the next-to-highest priority, and so on.

The names given to the states must also have the same hierarchical structure, where
each component state name represents the state of the corresponding entity in the name
of the specification. For example, if A € A, B€ B, C e C,D € D, and E € E, then
[[A/B/C]/[D/E]] is a possible state in specification [[A/B/C]/[D/E]].

4.1.3 Events

For each type of event in the tabular specification language, there exists a corresponding

ASCII representation. Table 4.1 shows this correspondence.

The output field of a state transition rule must be specified as a list of zero or more
events separated by commas and delimited by parentheses. No whitespace is permitted

in this list. If exactly one event exists in a list, the parentheses may be omitted.

4.1.4 Resource Allocation

The resource-allocation-list field of an ASCII specification, if present, must contain a
comma-separated list of resource-allocation directives delimited by parentheses. A re-
source-allocation directive is of the form ‘+resource’ or ‘-resource’, representing the
request or release of a resource, respectively. No whitespace is permitted in the resource-

allocation list. If zero or ome directives exist in the list, then the parentheses may be
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Tabular Representation ‘

ASCII Representation

Abbreviated Form ‘

Uax, x{a token:x:down:agent t:x:d:a
Urx, xUr token:x:down:remote_stack t:x:d:r
Tax, xTa token:x:up:agent t:x:u:a
Mrx, X(Ir token:x:up:remote stack tix:iu:r
Yax token:*:down:agent t:i*x:d:a
Ur* token:*:down:remote_stack tik:d:r
fax* token:*:up:agent t:*:u:a
MTRr* token:*:up:remote_stack tifiur
SlZ>fS2(e) state_transitionrequest:S1:£:S2:e | s:S1:£:52:¢
=+S(e) activation:f:S:e a:f:S:e
=5 parallel:f:S p:f:S
>event internal signal:event i:event
NewCall(OCM) newcall:0OCM n:0CM
K forward> forward f
Table 4.1: ASCII representations of events
omitted.

4.2 Composite Specifications

When feature specifications are composed to form the specification of a feature stack, all

StateChangeRequest events, Activation events and queued Token events are resolved, and

therefore the resulting specification should be void of such events. In the same manner,

composing the specifications of two feature stacks to form a call specification will resolve

all tokens that are passed between the two feature stacks. At this stage, an event trace

exists for each of the two agents. In order to distinguish between the two traces, Token

events in call specifications are annotated with a number uniquely identifying one of the

two agents.
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During the final stage of composition of telephony features, when two or more call
specifications are composed to form the specification of a call system, all Parallel events
are resolved, leaving only Token events (to and from the agents) and Internal events in

the specification of the system.

In order to prevent the reachability graph generator from cycling, a special state

called DONE is used in place of NULL once a feature deactivates.

4.3 Reachability Graph Generator

In the course of my thesis work, I have developed several tools for detecting feature
interactions through reachability analysis of composed specifications. The composition
technique employed by these tools is incremental in nature. Section 4.3.1 describes the
framework upon which the tools were built, Sections 4.3.2 through 4.3.4 discuss the
algorithms that perform the reachability analysis within this framework, and Section 4.3.5

introduces the tools themselves.

4.3.1 Object-Oriented Framework

In order to ensure a consistent framework upon which all of the reachability analysis tools
can be based, as well as a backbone of code which can be easily expanded in the future to
provide extended reachability-analysis services, I spent considerable time designing and
coding a set of C++ classes to model the entities involved. Among the twenty-nine classes

defined, the classes depicted in Figure 4.2 are the most significant.
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4 E E E EEEEDWN
1
StateTransitionMachine s ActiveEntity

¢t mmmmmmmm?

Figure 4.2: C++ Classes

Objects of the StateTransitionMachine class represent tabular specifications of features,
feature stacks, calls, and call systems. A StateTransitionMachine object contains a set of
state transition rules, and can respond to queries regarding these rules. It also has the
ability to read and write itself in ASCII form (see Section 4.1), and to perform simple
self-integrity checks. For the sake of brevity, StateTransitionMachines will be referred to
as STMs for the remainder of this thesis.

ActiveEntity is an abstract class which is used to model the reachability graphs of
composite entities at the various levels of composition, i.e., feature stacks, calls and call
systems. It defines the interface to the mechanics necessary to simulate the behavior of
such entities. Mechanisms which are common to all such entities are defined within this
class, while entity-specific mechanisms are left undefined and must be defined by derived

classes used to model specific types of entities.

When an ActiveEntity-derived object is instantiated, it is given the state transition
machines of the entities of which it is composed. For example, a FeatureStack is given the
list of STMs for features in the stack, while a Call is given the pair of STMs representing
the two ends of the call (i.e., two feature stacks). The ActiveEntity then behaves as
the composition of the entities defined by these machines. In order to do this, it must

keep track of its own state, which consists of the current state of each of its component
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entities, the set of currently used resources, and all pending events. When an ActiveEntity
is first instantiated, the state of each component entity is NULL, the set of currently used

resources is empty, and there are no pending events in the system.

The most significant method of an ActiveEntity is process_event(), which accepts an
event as an argument and causes the entity to behave as if the event occurred. pro-
cess_event() will not return until another stable state is reached. A stable state is a state
in which there exists no pending events in the system, i.e. when there are no unresolved

tokens, parallel events or state transition requests.

Since the mechanics of feature stacks, calls and call systems differ significantly, pro-
cess_event() is defined separately for each of these entity types. Section 4.3.2 describes

the different incarnations of this method as they apply to each type of entity.

Two other ActiveEntity methods of importance are compose() and simulate(). The
former generates a composite state transition machine representing the entity, while the
latter provides the user with an interactive interface, allowing him/her to interactively
explore the behavior of the entity. The algorithms for these methods are described in
Sections 4.3.3 and 4.3.4.

4.3.2 Algorithm: process_event()

FeatureStack::process_event() is the most complex of all the algorithms in the system, since
at this stage of composition the priorities of the features must be taken into account
in order to avoid non-determinism in the system. This algorithm implements priority
rules for resolving multiple outstanding tokens waiting in queues. It also implements a
recursive proceesure for keeping track of pending StateChangeRequest events, as discussed

in Section 3.3.3.
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Call::process_event(), on the other hand, is relatively simple. At this stage of com-
position all intermediate states involving pending StateChangeRequests and queued to-
kens have already been resolved and are therefore not considered. The only events that
Call::process_event() accepts are Parallel events, Internal events and Token events (from the
remote agent). The event is passed to the appropriate feature stack, which will presum-
ably change state upon receipt of the event. All output generated by this state transition
is considered output of the call with the exception of Token events destined for the other
feature stack via the network. These events are passed to the other stack, one at a time,

and the process continues until there are no pending tokens flowing through the network.

The necessary mechanics of CallSystem::process_event() are not fully understood yet,

and so this method has not been implemented.

Since the process_event() methods are responsible for following and controlling the flow
of events in a system, the mechanisms for detecting feature interactions lie within these
methods. Due to the incremental nature of compositions in the model, each incarnation
of process_event() is only capable of detecting a subset of the class of feature interactions

described in Section 5.3. However, together all such interactions are detected.

4.3.3 Algorithm: compose()

The purpose of ActiveEntity::compose() is twofold: it performs a reachability analysis of
the composite specification by exploring all reachable composite states while at the same
time constructing a state transition machine describing the behavior of the composed
entity. It differs from the reachability analysis algorithm suggested by Holzmann [7] (see
Section 2.2) in that it is iterative. This desision was made mainly for efficiency reasons;
the reachability coverage is just as complete. Also, compose() performs a breadth-first

search rather than a depth-first by using a queue rather than a stack to store the working
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set of states. This has the advantage that it finds the shortest error sequences first.

The algorithm is listed in Figure 4.3. Q represents the working set of states to be
analyzed. In the initial state, all of the composite entities are in the NULL state and the
set of currently used resources is empty. The initial state is placed in Q. Since there are
only a finite number of states in each of the composite entities, there are a finite number
of states in the composed system and this algorithm is guaranteed to halt (assuming a

finite supply of resources).

{ initial_state } // queue of states to be analyzed
{1} // set of visited states
{}

// composed state transition machine

Q
A
C

while Q nonempty
s = Q.dequeue()
for each accepted input 1 in state s
place system in state s
s’ = process_event(1i)
if ' is not in 'V
add s’ to'V
Q.enqueue(s')
if rule name(s) RN name(s') is not in C
add rule name(s) RN name(s') to C

return C

Figure 4.3: compose() algorithm

The function name(s) generates a state name consisting of the names of the states
of each of the composite entities in s. This state name does not contain any information

about the current set of resources. Therefore there is a many-to-one mapping between
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the states of the system and the states of the resulting specification'. Let C be the
set of all state transition rules describing the behavior of the composed state transition
machine. If a similar transition (having the same source state, desitination state and

input) has not been encountered, the transition is added to C.

This algorithm is common for each of the stages of composition, and therefore is only
implemented once in the base class. As mentioned in Section 4.3.2, the detection of
feature interactions and the actual mechanics of operation at each stage are the respon-
sibility of the individual process_event() methods, and not of the compose() algorithm

itself.

Note that since compositions in our model are performed incrementally, and since
intermediate (non-stable) system states are resolved at each stage of composition, the
resulting state space search at each stage 1s reduced. For example, consider the following

features (partially specified):

Feature F Feature G
‘ State ‘ Input ‘ Output ‘ NewState ‘ ‘ State ‘ Input ‘ Output ‘ NewState ‘
A [ datn | tofra, talla B | X [Uats | tafia, tsfha | Y |
B flats tslta C

Table 4.2: Example: partially-specified features F' and G

If these two features are composed into feature stack [F/GJ, then the following series

of events will occur when event | 4t; is applied to state [A /X]:

o F will accept {J4t; and transition into state B, outputting token events tof)4 and

tslla.

!However, the resulting specification can be used to compute the complete state space of the system
by making use of the resource-allocation-list field which provides delta information about the usage of

global resources.
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o G will accept t3l}4 and transition into state Y, outputting token events tyf)4 and

tsfla-
o F will accept {4ty and transition into state C, outputting token event tgf) 4.
Barring interference from other features, tokens tof} 4, ts(t4 and tgf} 4 will escape from

the stack, and a stable state ([C/Y]) will be reached. The generated state transition

machine for the feature stack will simply record this series of state transitions as

‘ State ‘ Input ‘ Output ‘ NewState ‘
| A/X [ ati | tofia, tsfia tefta | C/Y |

Table 4.3: Example: resulting state transition rule in [F/G]

When [F/G] is later used during the composition of a call, tokens t3{} 4 and t4f}4 will not

come into play at all.

4.3.4 Algorithm: simulate()

It is useful to simulate the composition of a set of features when a feature interaction has
been detected; it helps the user detect the sequences of events leading up to the inter-
action. The algorithm employed by the simulate() method is shown in Figure 4.4. The
list of commands specified within is not complete; other commands exist for requesting
different levels of verboseness from the system, querying for help, etc. See the user’s

manual in Appendix A for a complete list of commands.
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do forever
I = prompt_user()
switch 1
case “state”:
report current system state
case “state s”:
place system directly into state s
case “events”:
report list of events currently accepted from environment
case “event e”:
process_event(e)
case “quit”:
return

Figure 4.4: simulate() algorithm

4.3.5 Feature Interaction Detection Tools

The following tools have been developed, and can be invoked from the UNIX command

line:

stmcheck — Performs syntax checking and structural analysis on an ASCII specification.

See Sections 5.1 and 5.2 for a list of checks performed.

stackcompose — Uses FeatureStack::compose() to compose one or more feature specifi-
cations together into the specification of a feature stack. Also performs syntax

checking and structural analysis on both the original and resulting specifications.

callcompose — Uses Call::compose() to compose two feature stack specifications together
into the specification of a call. Also performs syntax checking and structural anal-

ysis on both the original and resulting specifications.
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stacksim — Uses FeatureStack::simulate() to simulate the behavior of one or more features

in a feature stack.

callsim — Uses Call::simulate() to simulate the behavior of two feature stacks connected

via a network in a call.

These tools provide functionality similar to the tools developed by Boumezbeur and
Logrippo [1]. Specifically, stackcompose and callcompose are similar to their symbolic
execution tool, while stacksimand callsim are similar to their step-by-step processing

tool.

Please see the user’s manual in Appendix A for a complete description of these tools.
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Reachability Analysis

The verification and analysis that is performed by the reachability analysis tools can
be divided into three classes — syntax checking, verification of structural properties of

specifications, and detection of feature interactions.

5.1 Syntax Checking

It 1s important to verify certain properties about feature specifications before composing
them together. One of the first things that is checked by the algorithm is the syntax of
the specifications. Since feature specifications are constructed manually and are entered
into the computer by humans, syntax checking is essential. All of the reachability analysis

tools perform the following syntax checks:

e All state transition rules must be minimally specified. That is, each transition must

have a state, an input, and a newstate field.

e State names must have the proper format: feature states must not have hierarchical

names, whereas the names of states of higher-order entities (such as calls or call

47
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systems) must have the hierarchical structure described in Section 4.1.2.

e All tokens in the specification must be elements of the set of valid tokens, which is

specified separately in a file called token types. See Appendix A for details.

e All resource names must be elements of the set of valid resources, which is specified

in a file called resources. See Appendix A for details.

If any of these checks fail, an descriptive error message is displayed by the tool before

exiting.

5.2 Structural Analysis

In addition to syntactic checks, the overall structures of feature specifications are checked
for correctness and completeness. It is possible for this level of verification to detect
deficiencies in the original specification of features. The following properties of feature

specifications are verified:

e State and input must be unique for every state transition rule. This restriction
ensures that the feature specifications are deterministic.

o The initial state of a feature must be NULL, indicating that the feature is initially
active.

e There must be a path from the NULL state to every other state. If this were not the

case, the feature specification would describe states that could never be reached.

e There must be a path from every state to the NULL state. If this were not the
case, then there would be reachable states from which the feature could never be

deactivated.
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e All specified input and output events must be possible. For example, it is impossible
for an internal signal event to activate a feature, since a feature must already be

active in order for such internal signals to occur.

If any of these checks fail, a descriptive error message is displayed by the tool before

exiting.

5.3 Feature Interaction Detection

Once their syntax and structure have been checked, feature specifications may be com-
posed together to form a feature stack specification. Subsequently, two feature stack
specifications may be composed to form a call specification. During composition, each
reachable state is tested to determine if a feature interaction can occur at that state.
These tests are based only on the current state of the system, which consists of the
current states of the individual features, the heads of the input queues in the feature

stack(s), and the set of currently used resources.

In many cases, detected interactions are desired interactions and the feature designer
wants to make sure that the composition of the features results in an appropriate interac-
tion. Alternately, feature interactions due to nondeterminism are resolved by prioritizing
the features. The interaction warnings generated by the composition tools then serve to
warn the feature designer of an interaction that has been resolved, in case the designer

wishes to resolve the interaction differently.

The composition algorithm can detect six types of feature interactions: call control,
information invalidation, data loss, resource contention, state control, and state loss. This
is a superset of the class of feature interactions discussed in [3]. Each type of feature

interaction that can be detected is described below.
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5.3.1 Call Control

A call-control interaction occurs when one feature intercepts input data that another
feature 1s waiting for. Such interactions are detected when multiple features are ready
to operate on the same input event. The higher-priority feature may either consume
the input event, thereby preventing the lower-priority feature from ever seeing the input,
or it may forward the event to the lower-priority feature after taking some action. Call-
control interactions are resolved by the prioritization of features on the feature stack; thus,
warnings about call-control interactions are used by feature designers to verify desired
data interceptions and to reveal resolved, undesired data interceptions which need to be

documented.

As mentioned above, such interactions may be desired. For example, in the feature

Call Waiting (CWT) for an originating call, the rule

‘ State ‘ Input ‘ Output ‘ NewState ‘

‘ HeLDCALL ‘ Yax ‘ ‘ HeLDCALL ‘

places the originating call on hold so that it doesn’t interfere with the agent’s communi-
cation with the new call. It does this by intercepting and consuming all tokens destined
for the Originating Call Model (OCM). While CWT is in state HELDCALL, the OCM
will never see any tokens originating from the agent. Conversely, the agent will never see

any tokens sent by the OCM.

The stackcompose tool generates feature interaction warning messages when such
a call-control interaction interaction is detected. For the above example, the following

warning message 1s one of several similar messages generated:

WARNING: Call Control Interaction detected
at State "[HeldCall/AuthOrigAttempt]" -
Features (CWT,0CM) accept "t:Disconnect:d:al".
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As well, there are several well-known, undesired interactions between services Three-
Way Calling (3WC') and Call Waiting (CWT). The agent can create a FlashHook token
by pressing the receiver hook quickly, as opposed to pressing the receiver hook long
enough to hang up the phone. In CWT?!, the agent uses the |l 4FlashHook event to
alternate between the two CWT calls. In 3WC, the agent uses a |}4FlashHook event
to initially activate the feature; when the call to the third party has been established,
the agent uses the |}4FlashHook event again to join the three parties in a conference
call. A call control interaction occurs if features of both services are ready to receive a
|} aFlashHook event, and one feature inputs the token without forwarding it to the other

feature.

In one configuration, in which 3WC' is used to establish a second call and CWT is ac-
tivated on the second call, the composition algorithm detects 12 call-control interactions,

5 of which are unique?:

Features (CWT,3WC) accept "Flashhook' in state [Decision/Private/Active]
Features (CWT,3WC) accept "Flashhook" in state [HeldCall/Private/Activel
Features (CWT,3WC) accept "Flashhook" in state [Active/Private/Activel

Features (CWT,0CM) accept "Disconnect" in state [HeldCall/Private/Activel
Features (CWT,0CM) accept "Disconnect" in state [HeldCall/Private/ReleasePending]

Three distinct call control interactions involving the |} 4FlashHook event are detected
between CWT and SWC'. In addition, Two distinct call control interactions are detected

between CWT and OCM. One such interaction is depicted by the following scenario.

1The following interactions involving the |} 4 FlashHook event only occur when the agent is using a
simple telephone that does not have special buttons for CWT and SWC'.

2The 7 warning messages not shown are duplicates of the 5 messages presented above. Interactions
are detected between pairs of features, and these interactions can occur while the third feature is in
various states. Since the composed state (consisting of the three features’ current states) is different in

every case, the composition algorithm issues distinct warning messages.
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In CWT, one call is always on hold. If the agent forgets about the held CWT call and
hangs up (with a Disconnect token), then CWT will ring back the agent. That is, CWT
will consume the Disconnect token and try to re-establish the call. Meanwhile, OCM is
waiting for a |} 4Disconnect to terminate the call. Thus, the interactions between CWT
and OCM are desired; the consumption of the Disconnect token is specifically designed

to delay the termination of the call.

5.3.2 Information Invalidation

An information-invalidation interaction occurs at the feature stack composition level
when one feature modifies the value of a token that is subsequently used by a second
feature. The feature’s specification must explicitly indicate when a feature modifies an
output token (or a data field in an output token) by annotating the output event with
a prime (7). The composition algorithm replaces prime (') annotations with information
about which feature is making the modification and, if applicable, which of the token’s
data fields 1s being modified. Information about data modifications is cumulative. If the
modified token is later intercepted and used by another feature, the interaction is detected
and a warning is given, providing the feature designer with the token’s modification

history.

The same type of interaction is detected at the call composition level when a feature
in one feature stack sends a modified token to a feature in another feature stack. For
example, there is a known, desired, information-invalidation interaction between tele-
phony features Calling Number Display (CND) and Calling Number Display Blocking
(CNDB). When a call is being a initiated, the caller’s OCM will send a CallRequest to-
ken to the receiver’s TCM. Feature CND operates on top of a TCM; its purpose is to

get the initiator’s telephone number and to display it when the call is presented to the
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receiving agent. Feature CNDB operates on top of an OCM; its purpose is to modify
the CallRequest token so that feature CND will not display the initiator’s number. This

interaction is depicted in Figure 5.1.

|[x CallRequest!origin ||, CallRequest.origin

CNDB accents _madifies I
and passes on

CNDB I¥] CallRequest token -1 CND

||k CallRequest
CND accepts modified

CallRequest token
and passes modified

OCM information to the TCM

user

Figure 5.1: Desired Information Invalidation

When the feature stack [CNDB/OCM] is composed with the feature stack [CND/TCM]
using the tool callcompose, the following feature interaction warning message is gener-

ated:

WARNING: Feature Stack [CND/TCM] accepted token t:CallRequest!origin:d:r
which was modified by [CNDB/OCM].

This message correctly indicates the fact that the feature stack [CNDB/OCM] is
sending the feature stack [CND/TCM] the CallRequest token with the origin field modi-
fied. This i1s desired behavior, as the purpose of CNDB is to prevent CND from seeing
the correct origin of the caller. Note that at this level of composition it is impossible for
the algorithm to determine exactly which features are involved in the interaction, so the

algorithm only reports the feature stacks involved (as well as the token involved).
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As with call-control interactions, the prioritization of features resolves information-
invalidation interactions; warnings simply notify the feature designer of the resolved

interaction.

5.3.3 Data Loss

A data loss interaction occurs at the feature stack composition level when a token is
passed down through a feature stack and eventually falls off the bottom of the stack.
It can also occur at the call composition level when a token is sent across a network to
another feature stack which does not accept the token. When this type of interaction is
detected, it typically indicates that one feature has made an invalid assumption about the
readiness of another feature to accept a particular token. This type of interaction may
also be detected in cases where a reachable state at the feature stack level is unreachable
at the call system level due to desired interactions between multiple features of a single
service which operate on separate feature stacks. In this case the states are nonsense
states since they do not exist in the fully-composed system. Therefore their behavior
i1s unimportant and any feature interaction warning messages generated by such states

should be ignored.

WARNING: token "t:Disconnect:d:al" dropped off bottom of feature stack.

5.3.4 Resource Contention

Any attempt by a feature to acquire an instance of a resource beyond the specified ca-
pacity of that resource is detected as a resource contention interaction. Such interactions
are detected by comparing the number of each resource already allocated after each

state transition with the specified capacity of each resource. Resource contention is also
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reported if the set of composed features releases more instances of a resource than it

acquires.

For example, services Three-Way Calling (3WC) and Call Waiting (CWT) both
require the use of a piece of hardware known as a bridge, but there is only one bridge
available to an agent. If an agent attempts to use both services at the same time, there
will be a resource contention interaction. A bridge is requested by the feature of CWT
which operates on the incoming call that the service activates. In SWC, a bridge is
requested by the feature that initiates a call to the third party. If these two features
operate on the same feature stack, the following resource contention warning is reported

when the features and call model are composed into a feature stack.

RESOURCE CONTENTION:
[Null/Active/Active] => [Holding/Active/Active] needs 2 bridges

If the features reside on parallel feature stacks, then the resource contention would be

detected when the calls were composed into call systems.

Some feature pairs interacting through a call system, such as the two Call Waiting
(CWT) features, will falsely generate resource contention interaction messages during
the feature-stack and call levels of composition. This is because the CWT feature at
the active origining end of the call is responsible for releasing resources that the CWT
feature at the incoming end of the call acquires. If the call-system level of composition
were implemented, no such warning messages would be generated for the CWT features

at the call level of composition, indicating that no resource contention exists between the

CWT features.
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5.3.5 State Control

Sometimes one feature will attempt to control the behavior of another feature in the
same feature stack by forcing the second feature to undergo a particular state transition.
A state control interaction occurs when the second feature is not in the expected state at
the time its ‘new orders’ are received; it also occurs if the requested transition does not
exist. The following is an example of the type of message that is generated when this

type of feature interaction is detected:

Feature Interaction - Feature f received state change event "s:a:f:b:e"
but was in state c. Cannot continue.

Since the composition algorithm cannot generate the next state, the algorithm must
abort. A state control interaction is the only feature interaction that causes the compo-

sition algorithm to abort.

5.3.6 State Loss

A state loss interaction occurs when states that were reachable in a feature specification
become unreachable when the feature is composed with other feature specifications into a
feature stack. When this type of interaction is detected at the feature stack composition

stage, it typically indicates an undesired feature interaction.

This type of interaction can also occur at the call composition stage, when states
that were reachable in a feature stack specification become unreachable when the feature
stack is composed with another feature stack. At this level of composition, however, such

a feature interaction may be a normal side effect of two interacting feature stacks.



Chapter 6

Conclusion

During my thesis work I extended the work began by my supervisor in [3]. This involved
helping to define a language for the specification of service-oriented software systems,
with special extensions for the specification of telephony systems. I have also helped
define the execution model for the features in such a system. Specifically, I have defined

the rules which cause systems defined under the model to behave deterministically.

A large portion of my thesis work involved implementing a set of tools for incremen-
tally composing features into feature stacks and feature stacks into calls. These tools
are built around an efficient reachability-graph generator which examines all reachable
states of a system in order to detect feature interactions. Algorithms have been developed
and implemented for detecting six types of feature interactions: call control, information

invalidation, data loss, resource contention, state control, and state loss.

Continuation of this work would involve the implementation of the third stage of
composition: the composition of calls into call systems. This will complete the set of

tools necessary to analyze complete call system configurations.

A longer term goal is to allow features to raise and lower assertions during their execu-
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tion so that logical properties about the system can be verified. Assertions are properties
about the call that the feature expects to hold, even after the feature is deactivated. For
example, telephony feature Originating Call Screening (OCS) is activated when a call is
initiated. Its purpose is to compare the dialed number against a list of invalid numbers.
If the dialed number passes the test, then the OCS feature will allow the call to proceed
and will terminate normally. However, the feature assumes that the call eventually es-
tablished will be to the number that passed the OCS test, and this assumption can be
invalidated by features that change the destination of the call (e.g., Call Transfer and
Call Forward). If features raise assertions, then conflicts between assertions raised by

different features could be detected and reported.

The composition algorithm already makes provisions for allowing features to raise
and lower assertions by allowing an optional sixth field in each state transition rule of
a feature specification. This field may contain a comma-separated list of assertion di-
rectives delimited by parentheses. An assertion directive is of the form ‘a:assertion’
or ‘u:assertion’ representing the raising (asserting) or lowering (unasserting) of an as-
sertion. The algorithm also keeps track of the list of active assertions while performing
reachability analysis. However, the algorithm currently contains no logic for the inter-
pretation of the assertions. Algorithms must be developed which can analyze the active
assertion list at every reachable state in order to detect logical inconsistencies in the

specification of the system.
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Appendix A

Reachability Analysis Tools User’s

Manual

The following is a description of the tools that have been developed for the purpose of
performing reachability analysis on the composition of feature specifications. These tools
can be invoked from the Unix command-line. Each of the tools accept command-line
options which specify the filename(s) of the ASCII specification(s) to work on, as well
as optional arguments (indicated by enclosing brackets ([ ]) in the syntax descriptions
below). In addition to the specification files, each of the tools also use two supplementary
files which must reside in the current working directory as the tools are invoked. They

are:

resources — Contains a list of resources available to the system being composed, one
resource per line, with each resource followed by a number indicating how many of

that particular resource are available. For example:
bridge 1
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If the system being composed attempts to use a non-existent resource or attempts

to use more of a particular resource than are available, the user will be informed.

token_types — Contains a list of the valid token types available to the system being
composed. In this list it 1s possible to assign more than one synonym per token
type. This is done by placing all of the synonyms for a single token type on a single

line, with each line representing a different token type. For example:

CallRequest TerminationAttempt
Disconnect

NetworkBusy

ReleaseTimeout

FlashHook JoinConf SwitchCalls InitiateNewCall

Here, FlashHook and SwitchCalls are synonyms for each other, so if one feature
emits a SwitchCalls token, another feature may intercept it as a FlashHook token.
If a specification contains a token type that is not listed in this file, it will be
flagged as an error. This mechanism is helpful in capturing typos in manually-

typed specifications.

A.1 stmcheck

stmcheck performs syntax checking and structural analysis on an ASCII specification.
See Sections 5.1 and 5.2 for a list of checks performed. The syntax for invoking stmcheck

is as follows:

stmcheck [-d] specification] [specification? ...]
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Option “-d” dictates that each ASCII specification should be dumped to stdout after
being checked. Any number of specifications can be provided on the command line; each

of them will be checked in order.

A.2 stackcompose

stackcompose composes one or more feature specifications together into the specification
of a feature stack. It also performs syntax checking and structural analysis on both the

original and resulting specifications. The syntax for invoking stackcompose is as follows:
stackcompose [-v[#]] [-w[#]] feature activation_order ...

The features must be supplied in order of priority. That is, the feature highest on the
feature stack should be listed first on the command line, followed by the next-to-highest
feature, and so on. The activation_order parameters (one for each feature) specify the
order in which features become active and are placed into the feature stack. For example,
if the user wishes to compose the behavior of a feature stack containing Call Number
Display Blocking (CNDB), Originating Call Screening (OCS), and the Originating Call
Model (OCM), where CNDB has priority over OCS and is also activated before OCS,

the following command can be used:
stackcompose CNDB 2 0CS 3 OCHM 1

The last (i.e. lowest-priority) feature specified must be a basic call model such as OCM
and TCM, and it must be the first feature to activate.

The “-v” option specifies the level of verboseness during the composition:
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level 0 - outputs no trace information.
level 1 - outputs every system state and input combination tried.

level 2 — outputs level 1 information plus the resulting stable system state after each

input is processed.

level 3 — outputs level 2 information plus individual state transitions, including transi-
tions to non-stable states (i.e., transitions taken to resolve signals and tokens that

the feature stack produces in the processing of a single external event).

level 4 — outputs level 3 information plus trace information from a user-supplied C++
check function(), which must be compiled in with the rest of the code defining
the tool set. This function is called for each new system state reached, and may be

used for verifying specific state properties.

The following is a sample of level-3 verbose output from the stackcompose command

while composing the feature CNDB on top of the OCM:

s o o ok o ok ko o ko ok sk o ok sk o ok ok ko o Kk ko o ko o ok ko ok sk o ko ok sk o ok sk ok o ok sk o ks ok sk ok ks ok ks ko ok ks ok sk ok ko o sk ok o o
Trying state: [Null/SelectingRoute]
resources: ()
input: i:0CM:RouteSelected

Actions:
CNDB: Null --> WaitForSend
(s:SelectingRoute:0CM: AuthCallSetup:i:0CM:RouteSelected)
OCM: SelectingRoute --> AuthCallSetup (i:0CM:RouteSelected)

New state: [WaitForSend/AuthCallSetup]

resources: ()
ok ok ok ok o e sk sk ok ok ok ok o sk sk ok ok ok o o se ke sk ok ok ke ok ok sk o sk ke ke sk ok ok ok o se sk s sk sk ok ok o ok o o e ke sk ok sk ok ok ok ok ok sk ke ke sk ok ok ok ok o o ok sk ok ok ok
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¢

If no “-v” option is present, the default verboseness is level 0. If the “~v” option is

present without a number, the default verboseness is level 1.

The “-w” option specifies how many types of feature interactions to warn about during
composition:
level 0 — outputs no warnings.

level 1 — outputs call control, information invalidation, data loss, state control, and

state loss feature interaction warnings.

level 2 — outputs level 1 warnings plus resource contention warnings.
If no “~w” option is present, the default warn level is level 0. If the “~w” option is present
without a number, the default warn level is level 2.
A.3 callcompose

callcompose composes two feature stack specifications together into the specification of
a call. It also performs syntax checking and structural analysis on both the original and

resulting specifications. The syntax for invoking callcompose is as follows:
callcompose [-v[#]|] [-w[#]] stack0 stackl

The order of the feature stacks is irrelevant. The “-v” and “-w” options are the same

as with the stackcompose tool.
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A.4 stacksim

stacksim simulates the behavior of one or more features in a feature stack by provid-
ing the user with an interactive interface, allowing him/her to interactively explore the
behavior of the feature stack. The command-line arguments and their meanings are the

same as those for the stackcompose command.

When stacksimis invoked, the feature stack is started in the NULL state. The user is
then repeatedly supplied with a prompt, at which the user can enter one of the following
commands:

state — Queries the current state of the feature stack.

state s — Changes the state name of the feature stack. That is, it changes the states

of the individual features in the stack without changing the list of active resources.

state s r — Changes the state of the feature stack, where s is the state name repre-
senting the new states of the individual features in the stack and r is the new list

of active resources.

event — Queries the feature stack as to what events will cause it to transition into a

new state.

event e — Instructs the feature stack to act as if event e has occurred. The prompt will

not reappear until a stable state has been reached.
verboseness — Queries the current level of verboseness.
verboseness n — Changes the level of verboseness to n.

warnlevel — Queries the current warn level.
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warnlevel n — Changes the warn level to n.
help — Provides a brief help menu containing this list of commands.

quit — Exits the simulation.

A.5 callsim

callsim simulates the behavior of two features stacks in a call by providing the user
with an interactive interface, allowing him /her to interactively explore the behavior of
the call. The command-line arguments and their meanings are the same as those for the
callcompose command, and the commands that can be entered at the prompt are the

same as those for the stacksim command.



Appendix B

Tabular Feature Specifications

The following are the tabular specifications of all the telephony features used in the case

studies in Section 5.3.

B.1 Hold

‘ State ‘ Input Output | NewState
NuLL |} 4 ActivateHold FILTERING
FILTERING | {}4 DeactivateHold NuLL

Uax FILTERING
ax* FILTERING
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B.2 Originating Call Model

| State | Input | Output | NewState
NULL {} 4 OriginationAttempt AUTHORIGATTEMPT
AUTHORIG >Originated Collectinfof} 4 COLLECTINGINFO
ATTEMPT >OriginationDenied OriginationDenied{}4 | EXCEPTION
{} 4Disconnect NULL
COLLECTING | { 4lnfo COLLECTINGINFO
INFO >InfoCollected ANALYZINGINFO
>CollectionTimeout CollectionTimeout{} 4 | EXCEPTION
{} 4Disconnect NULL
ANALYZING >ValidInfo SELECTINGROUTE
INFO >InvalidInfo Invalidinfof} 4 EXCEPTION
{} 4Disconnect NULL
SELECTING >RouteSelected AUTHCALLSETUP
RouTE >NetworkBusy NetworkBusy{] 4 EXCEPTION
{} 4Disconnect NULL
AUTH >CallSetupAuthorized | CallRequest{tr SENDCALL
CALLSETUP >CallSetupDenied CallSetDenied{) 4 EXCEPTION
{} 4Disconnect NULL
SENDCALL {}gCallDelivered CallDeliveredq{) 4 ALERTING
{} rRAnswered Answered{} 4 ACTIVE
{}rCalledPartyBusy CalledPartyBusy1} 4 EXCEPTION
{}rCallCleared EXCEPTION
{} 4Disconnect CallCleared{tr NULL
ALERTING {} rRAnswered ACTIVE
{}rCalledPartyBusy CalledPartyBusy1} 4 EXCEPTION
{}rCallCleared EXCEPTION
{} 4Disconnect CallCleared{\r NULL
ACTIVE {}rCallCleared RELEASEPENDING
{}gDisconnect CallCleared{\r NULL
RELEASE {}grCalledPartyReconnect ACTIVE
PENDING >ReleaseTimeout ReleaseTimeouttr NULL
{} 4Disconnect CallCleared{tr NULL
EXCEPTION {} 4Disconnect NULL
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B.3 Terminating Call Model

‘ State ‘ Input ‘ Output NewState
NuLL | rTermination Attempt AUTHTERMINATION
AuTH >CallPresented HuNTINGFACILITY
TERMINATION | >TerminationDenied | CallCleared{|r EXCEPTION

YrCallCleared NuLL

|} 4 Disconnect Call Cleared{'r NuLL
HUNTING >FacilityFound PRESENTINGCALL
FAcILITY >Busy CalledPartyBusy{)r EXCEPTION

UrCallCleared NULL

|} 4 Disconnect CallClearedir NuLL
PRESENTING >CallAccepted CallDeliveredftr ALERTING
CALL Alert(r

>CallFailure Call Cleared{tr EXCEPTION

.4 Connected Answered{r AcCTIVE

UrCallCleared NULL

|} 4 Disconnect CallClearedir NuLL
ALERTING .4 Connected Answered{r AcTIVE

>CallRejected CallClearedir EXCEPTION

>RingingTimeout CallCleared{tr EXCEPTION

YrCallCleared NULL

|} 4 Disconnect CallClearedir NuLL
AcTIVE |} 4 Disconnect CallClearedir RELEASEPENDING

UrCallCleared NULL
RELEASE |4 CalledPartyReconnect | CalledPartyReconnect{lr | ACTIVE
PENDING |lrRelease Timeout NuLL

UrCallCleared NULL
EXCEPTION UrCallCleared NuLL

|} 4 Disconnect NuLL
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B.4 Three-Way Calling (originating call)

‘ State Input ‘ Output NewState ‘ Resources
NuLL U alnitiateNew Call NewCall(OCM) | HOLDING +bridge
HoLpiNg = 3wc CONFERENCE CONFERENCE

= s3wcNULL Alert{] 4 RINGBACK
'r Release Timeout X forward> NuLL —bridge
Uax Horping
Max HoLping
CONFERENCE | |}4Disconnect L forward> NuLL —bridge
'r Release Timeout X forward>> NuLL —bridge
RINGBACK U4 Answered NuLL —bridge
>RingingTimeout | Disconnect|} 4 NuLL —bridge
'r Release Timeout X forward>> NuLL —bridge
Uax RINGBACK
Max RINGBACK
B.5 Three-Way Calling (new call)
‘ State ‘ Input ‘ Output ‘ NewState
NuULL = 0cm AUTHORIGATTEMPT WAITANSWER
({4 OriginationAttempt)
WAITANSWER | {}4Answered K forward> | PRIVATE
= sweNULL NuLL
|} 4 Disconnect <K forward> | NULL
tr Release Timeout <K forward> | NULL
PRIVATE Y4 JoinConf CONFERENCE
= swcNULL NuLL
{} 4 Disconnect <K forward> | NULL
tr Release Timeout <K forward> | NULL
CONFERENCE | {}4Disconnect <K forward> | NULL
tr Release Timeout <K forward> | NULL
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B.6 Originating Call Screening

72

| State | Input | Output | NewState |
NULL ANALYZINGINFO= o cpr SELECTINGROUTE TEST
(>ValidInfo)
TEST >Match ANALYZINGINFO=> o o EXCEPTION NuLL
(>InvalidInfo)
>NoMatch ANALYZINGINFO= g opr SELECTINGROUTE | NULL
(>ValidInfo)
{} 4Disconnect L forward>> NULL
fTrReleaseTimeout L forward>> NULL
B.7 Call Waiting (originating call)
| State | Input | Output | NewState | Resources
NuULL = cwrHUNTINGFACILITY DECISION
DECISION {} 4SwitchCalls HELDCALL
= cwrNULL NuLL
ACTIVE= oM NULL({} 4 Disconnect) L forward>> NULL —bridge
RELEASEPENDING= ocm NULL({} gCallCleared) | < forward> NULL —bridge
HELDCALL | {} 4SwitchCalls ACTIVE
= cwTrNULL NuLL
{} 4Disconnect RINGBACK —bridge
RELEASEPENDING= ocm NULL({} gCallCleared) | < forward> NULL —bridge
oax HELDCALL
Tax HELDCALL
ACTIVE {} 4SwitchCalls HELDCALL
= cwrNULL NuLL
ACTIVE= o cm NULL({} 4 Disconnect) L forward>> NULL —bridge
RELEASEPENDING= oM NULL({} gCallCleared) | < forward> NULL —bridge
RingBack | |} 4CallAnswered NuLL
>RingBackTimeout Disconnect{} 4 | NULL
o ax RinGBAck
Tax RinGBAck
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B.8 Call Waiting (incoming call)

See Table 3.1.

B.9 Call Number Display

73

‘ State ‘ Input ‘ Output NewState
NuLL = rcm AUTHTERMINATION WaitForRING
(Ur TerminationAttempt)
WAITFORRING | {yaAlert L forward> NuLL
TerminationAttempt.originfl 4
|} 4 Disconnect K forward> NuLL
UrCallCleared L forward> NuULL
B.10 Call Number Display Blocking
‘ State ‘ Input ‘ Output ‘ NewState
NULL SELECTINGROUTE= 0 ey AUTHCALLSETUP | K forward> WaAITFORSEND
(>RouteSelected)
WaiTFor | {}rCallRequest CallRequest!originftg | NULL
SEND |4 Disconnect L forward> NuLL
tr Release Timeout K forward> NuLL




Appendix C

Composed Specifications

The following are examples of the composition of some of the feature specifications in
Appendix B. Each of these compositions were generated with the tools described in
Appendix A. See Section 4.1 for a description of how to interepret these composite
specifications. Where appropriate, excerpts from the verbose output produced by the

tools are included, illustrating the detection of feature interactions.

C.1 Call [[OCM]/[TCM]]

The most straightforward call specification is one in which no features are activated. In
this case, one feature stack consists solely of the Originating Call Model (OCM) while
the other consists solely of the Terminating Call Model (TCM).
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[[ocm]/[Tcml]

# Automatically generated STM specification.

[[Null]/[Bull]] t:0riginationAttempt:d:al () [[AuthOrigAttempt]/[Null]]
[[AuthOrigAttempt]/[Null]] i:0CM:Originated (t:CollectInfo:u:al) [[CollectingInfo]/[Nulll]
[[AuthOrighAttempt]/[Null]] i:0CM:0riginationDenied (t:OriginationDenied:u:al) [[Exception]/[Null]]
[[AuthOrigAttempt]/[Null]] t:Disconnect:d:al () [[Done]/[Nulll]

[[CollectingInfol/[Nulll] t:Info:d:ail () [[CollectingInfol/[Null]]

[[CollectingInfol/[Nulll] t:InfoCollected:d:al () [[AnalyzingInfol/[Nulll]

[[CollectingInfo] /[Nulll] i:0CM:CollectionTimeout (t:CollectionTimeout:u:al) [[Exception]/[Nulll]
[[CollectingInfol/[Nulll] t:Disconnect:d:al () [[Donel/[Null]l]

[[Exception]/[Null]] t:Disconnect:d:al () [[Done]/[Hull]]

[[AnalyzingInfo]l/[Null]] i:0CM:ValidInfo () [[SelectingRoute]/[Null]]
[[AnalyzingInfol/[Null]] i:0CM:InvalidInfo (t:InvalidInfo:u:al) [[Exception]/[Null]]
[[AnalyzingInfo]/[Nulll] t:Disconnect:d:al () [[Donel/[Nulll]

[[SelectingRoute]/[Null]] i:0CM:RouteSelected () [[AuthCallSetupl/[Nulll]
[[SelectingRoute]/[Null]] i:0CM:NetworkBusy (t:NetworkBusy:u:ail) [[Exception]/[Nulll]
[[SelectingRoute]/[Null]] t:Disconnect:d:al () [[Donel/[Null]l]

[[AuthCallSetup]/[Hull]] i:0CM:CallSetupAuthorized () [[SendCalll/[AuthTermination]]
[[AuthCallSetup]/[Null]] i:0CM:CallSetupDenied (t:CallSetDenied:u:al) [[Exception]/[Null]]
[[AuthCallSetup]/[Hull]] t:Disconnect:d:al () [[Done]/[Null]]

[[SendCalll/[AuthTermination]] t:Disconnect:d:al () [[Done]/[Donel]
[[SendCalll/[AuthTermination]] i:TCM:CallPresented () [[SendCalll/[HuntingFacility]]
[[SendCall]/[AuthTermination]] i:TCM:TerminationDenied (t:CallCleared:u:al) [[Exception]/[Exception]]
[[SendCall]/[AuthTermination]] t:Disconnect:d:a2 (t:CallCleared:u:al) [[Exception]/[Donel]
[[SendCalll/[HuntingFacility]] t:Disconnect:d:al () [[Done]/[Donell
[[SendCalll/[HuntingFacility]] i:TCM:FacilityFound () [[SendCall]/[PresentingCalll]
[[SendCalll/[HuntingFacility]] i:TCM:Busy (t:CalledPartyBusy:u:al) [[Exception]/[Exception]]
[[SendCalll/[HuntingFacility]] t:Disconnect:d:a2 (t:CallCleared:u:al) [[Exception]/[Donell
[[Exception]/[Exception]] t:Disconnect:d:al () [[Donel/[Exception]]
[[Exception]/[Exception]] t:Disconnect:d:a2 () [[Exception]/[Done]l]

[[Exception]/[Done]] t:Disconnect:d:al () [[Donel]/[Done]l]

[[SendCall]l/[PresentingCalll] t:Disconnect:d:al () [[Done]/[Donell
[[SendCall]/[PresentingCall]] i:TCM:CallAccepted (t:Alert:u:a2,t:CallDelivered:u:al) [[Alerting]/[Alerting]]
[[SendCall]l/[PresentingCall]l] i:TCM:CallFailure () [[SendCalll]/[HuntingFacility]]
[[SendCall]/[PresentingCall]] t:Connected:d:a2 (t:Answered:u:al) [[Active]/[Active]]
[[SendCalll/[PresentingCall]l] t:Disconnect:d:a2 (t:CallCleared:u:al) [[Exception]/[Done]l]
[[Done]/[Exception]] t:Disconnect:d:a2 () [[Done]/[Done]l]

[[Alerting]/[Alerting]] t:Disconnect:d:al () [[Done]/[Donell

[[Alerting]/[Alerting]] t:Connected:d:a2 () [[Activel/[Active]]

[[Alerting]/[Alerting]l] i:TCM:CallRejected (t:CallCleared:u:al) [[Exception]/[Exception]]
[[Alerting]l/[Alerting]] i:TCM:RingingTimeout (t:CallCleared:u:al) [[Exception]/[Exception]]
[[Alerting]/[Alerting]] t:Disconnect:d:a2 (t:CallCleared:u:ail) [[Exception]/[Done]]
[[Active]l/[Active]] t:Disconnect:d:ail () [[Donel/[Donel]

[[Active]/[Activel] t:Disconnect:d:a2 () [[ReleasePending]/[ReleasePending]]
[[ReleasePending]/[ReleasePending]] i:0CM:ReleaseTimeout () [[Donel]/[Done]]
[[ReleasePending]/[ReleasePending]] t:Disconnect:d:al () [[Done]/[Donell
[[ReleasePendingl/[ReleasePending]] t:CalledPartyReconnect:d:a2 () [[Active]/[Active]]

i
i
t
t
i
i

# Total number of rules: 45
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C.2 Feature Stack /[CNDB/OCM]

When Call Number Display Blocking (CNDB) is composed with the OCM, the following

specification results:

[cHDB/0CHM]
# Automatically generated STM specification.

[Null/Null] t:OriginationAttempt:d:ail () [Null/AuthOrighAttempt]

[Null/AuthOrigAttempt] i:0CM:0riginated (t:CollectInfo:u:al) [Null/CollectingInfol
[Null/AuthOrigAttempt] i:0CM:0OriginationDenied (t:0OriginationDenied:u:al) [Null/Exception]
[Null/AuthOrigAttempt] t:Disconnect:d:al () [Null/Done]

[Null/CollectingInfo] t:Info:d:al () [Null/CollectingInfo]

[Null/CollectingInfo] t:InfoCollected:d:al () [Null/AnalyzingInfo]

[Null/CollectingInfo] i:0CM:CollectionTimeout (t:CollectionTimeout:u:al) [Null/Exception]
[Null/CollectingInfo] t:Disconnect:d:al () [Null/Done]

[Mull/Exception] t:Disconnect:d:al () [Null/Done]

[Null/AnalyzingInfo] i:0CM:ValidInfo () [Null/SelectingRoute]

[Null/AnalyzingInfo] i:0CM:InvalidInfo (t:InvalidInfo:u:al) [Null/Exception]
[Null/AnalyzingInfo] t:Disconnect:d:al () [Null/Done]

[Null/SelectingRoute] i:0CM:RouteSelected () [WaitForSend/AuthCallSetupl
[Null/SelectingRoute] i:0CM:NetworkBusy (t:NetworkBusy:u:al) [Null/Exception]
[Null/SelectingRoute] t:Disconnect:d:al () [Null/Done]

[WaitForSend/AuthCallSetup] t:Disconnect:d:ail () [Done/Done]

[WaitForSend/AuthCallSetup] i:0CM:CallSetupAuthorized (t:CallRequest!origin:u:r) [Done/SendCall]
[WaitForSend/AuthCallSetup] i:0CM:CallSetupDenied (t:CallSetDenied:u:al) [WaitForSend/Exception]
[Done/SendCall] t:CallDelivered:d:r (t:CallDelivered:u:al) [Done/Alerting]
[Done/SendCall] t:Answered:d:r (t:Answered:u:al) [Done/Active]

[Done/SendCall] t:CalledPartyBusy:d:r (t:CalledPartyBusy:u:al) [Done/Exception]
[Done/SendCall] t:CallCleared:d:r (t:CallCleared:u:al) [Done/Exception]

[Done/SendCall] t:Disconnect:d:al (t:CallCleared:u:r) [Done/Done]

[WaitForSend/Exception] t:Disconnect:d:al () [Done/Donse]

[Done/Alerting] t:Answered:d:r () [Done/Active]

[Done/Alerting] t:CalledPartyBusy:d:r () [Done/Exception]

[Done/Alerting] t:CallCleared:d:r (t:CallCleared:u:al) [Done/Exception]

[Done/Alerting] t:Disconnect:d:al (t:CallCleared:u:r) [Done/Done]

[Done/Active] t:CallCleared:d:r () [Done/ReleasePending]

[Done/Active] t:Disconnect:d:al (t:CallCleared:u:r) [Done/Donel

[Done/Exception] t:Disconnect:d:al () [Done/Done]

[Done/ReleasePending] t:CalledPartyReconnect:d:r () [Done/Active]

[Done/ReleasePending] i:0CM:ReleaseTimeout (t:ReleaseTimeout:u:r) [Done/Donel
[Done/ReleasePending] t:Disconnect:d:al (t:CallCleared:u:r) [Done/Done]

# Total number of rules: 34
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C.3 Feature Stack [CND/TCM]

When Call Number Display (CND) is composed with the TCM, the following specifica-

tion results:

[cup/TCH]
# Automatically generated STM specification.

[Null/Null] t:CallRequest:d:r () [WaitForRing/AuthTermination]
[WaitForRing/AuthTermination] t:Disconnect:d:al (t:CallCleared:u:r) [Done/Done]
[WaitForRing/AuthTermination] t:CallCleared:d:r () [Done/Done]
[WaitForRing/AuthTermination] i:TCM:CallPresented () [WaitForRing/HuntingFacility]
[WaitForRing/AuthTermination] i:TCM:TerminationDenied (t:CallCleared:u:r) [WaitForRing/Exception]
[WaitForRing/HuntingFacility] t:Disconnect:d:al (t:CallCleared:u:r) [Done/Done]
[WaitForRing/HuntingFacility] t:CallCleared:d:r () [Done/Done]
[WaitForRing/HuntingFacility] i:TCM:FacilityFound () [WaitForRing/PresentingCall]
[WaitForRing/HuntingFacility] i:TCM:Busy (t:CalledPartyBusy:u:r) [WaitForRing/Exception]
[WaitForRing/Exception] t:Disconnect:d:al () [Done/Done]
[WaitForRing/Exception] t:CallCleared:d:r () [Done/Done]
[WaitForRing/PresentingCall] t:Disconnect:d:al (t:CallCleared:u:r) [Done/Donel
[WaitForRing/PresentingCall] t:CallCleared:d:r () [Done/Donel
[WaitForRing/PresentingCall] i:TCM:CallAccepted (t:CallDelivered:u:r,t:Alert:u:al,
t:TerminationAttempt.origin:u:ail) [Done/Alerting]
[WaitForRing/PresentingCall] i:TCM:CallFailure () [WaitForRing/HuntingFacility]
[WaitForRing/PresentingCall] t:Connected:d:al (t:Answered:u:r) [WaitForRing/Active]
[Done/Alerting] t:Connected:d:al (t:Answered:u:r) [Done/Active]
[Done/Alerting] i:TCM:CallRejected (t:CallCleared:u:r) [Done/Exception]
[Done/Alerting] i:TCM:RingingTimeout (t:CallCleared:u:r) [Done/Exception]
[Done/Alerting] t:CallCleared:d:r () [Done/Done]
[Done/Alerting] t:Disconnect:d:al (t:CallCleared:u:r) [Done/Done]
[WaitForRing/Active] t:Disconnect:d:al (t:CallCleared:u:r) [Done/ReleasePending]
[WaitForRing/Active] t:CallCleared:d:r () [Done/Done]
[Done/Active] t:Disconnect:d:al (t:CallCleared:u:r) [Done/ReleasePending]
[Done/Active] t:CallCleared:d:r () [Done/Done]
[Done/Exception] t:CallCleared:d:r () [Done/Done]
[Done/Exception] t:Disconnect:d:al () [Done/Done]
[Done/ReleasePending] t:CalledPartyReconnect:d:al (t:CalledPartyReconnect:u:r) [Done/Activel
[Done/ReleasePending] t:ReleaseTimeout:d:r () [Done/Done]
[Done/ReleasePending] t:CallCleared:d:r () [Done/Done]

# Total number of rules: 30
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C.4 Call [[CNDB/OCM]/[CND/TCM]]

When the feature stacks [CNDB/OCM] and [CND/TCM] (see Sections C.2 and C.3
respectively) are composed, the following (desired) feature interaction is detected (see

Section 5.3.2 for an explanation):

S ok oo o ok o o o ok ok ok o o ok ok o o Kok ok o o o ook o ok o ok o o ok ok ok o o ok sk o ok K o o kR o o oK ok o o sk ok o o ok ok o sk ok ok o ok ok o K
Trying state: [[WaitForSend/AuthCallSetup]/[Null/Null]l]
resources: ()
input: 1:0CM:CallSetupAuthorized

Actions:
[CNDB/OCM] : [WaitForSend/AuthCallSetup] --> [Done/SendCall] (i:0CM:CallSetupAuthorized)
[CND/TCM]: [Null/Null] --> [WaitForRing/AuthTermination] (t:CallRequest!origin:d:r)

WARNING: Feature Stack [CND/TCM] accepted token t:CallRequest!origin:d:r
which was modified by [CNDB/OCM].

New state: [[Done/SendCall]/[WaitForRing/AuthTermination]]

resources: ()
s sk kK ok ok ok ok ok ok ok ok ok Kok sk sk sk ok o sk ok ok ok ok ok sk sk sk sk sk ook ok ok ok o o s s ok ok ok ok ks sk sk sk ok o o o o o o o o ok sk ok ok Kok sk sk ok ok o

The specification generated is as follows:
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7§ :SeTnI Fo Iequmu Te30] #

[[eucq/euoq] /[eucq/eucq]] () Ze:p:3oeuuwcostq:s [[uorsdeoxy/euoq]/[euoq/eucq]]

[[eaTa0oy/euoq] /[eaTa0y/ouoq]] () Te:p:gzoeuucoeyfsredperen:s [[Burpusdeswerey/euc(q]/[SurpuedesesTey/ouoc(q]]

[[euoq/euoq] /[euoq/euoq]] () Te:p:3oeuuoostq:3 [[Surpusdeswerey/euoc(q]/[Burpuedesesey/ouoc(q]]

[[euoq/euoq] /[euoq/eucq]] () snoewrjeseeTey:|D0:T [[SBurpuegeseeyey/eucq]/[Surpusdesestey/euoq]]

[[euoq/euoq]/[ucTadeoxq/euoq]] () Te:P:3oeuucostq:s [[uorgdeoxg/euoq]/[uctsdeoxy/euoq]]

[[uotadeoxm/euoq] /[eucq/euoq]] () TFe:p:soeuucostq:s [[uorgdeoxy/euoq]/[uotsdeoxy/eucq]]

[[Butpusdeswerey/eucq] /[ButpusdesesTey/ouoq]] () Ze:p:300uUuodsT(q:3 [[0AT30y/euoq]/[eAaTa0y/ouc(q]]

[[eucq/euoq]/[euoq/euoq]] () Te:p:30euuoosTq:3 [[0AT30y/euoq]/[eAaT30y/ouoq]]

[[ButpuegeseeToy/eucq]/[BurpusdesesTey/eouoq]] () ge:p:3oeuuoostq:3 [[eaTaoy/Suryzogaten]/[eaTaoy/eucq]]

[[euoq/euoq] /[eucq/euoq]] () Fe:p:30euucosTq:3 [[eAT3oy/Suryrogatey]/[eaT3oy/euoq]]

[[euoq/eucq]/[uoTsdeoxy/euoq]] (Fe:n:peIeeTnITen:3) ge:p:soeuucostq:3 [[BurgzeTy/euoq]/[SurazeTy/eucq]]

[[uotadeoxg/euoq]/[uoTgdeoxy/euoq]] (Fe:n:peTesToTTe:3) snoewrSurdury:[oL [[ButgxzeTy/euoq] /[BuraaeTy/euc(q]]

[[uoT3deoxy/euoq] /[uoTgdeoxy/euoq]] (Te:n:peaeeIdTTeD:3) Pe3oeleyTTeD HOL [[ButsaeTy/eucq] /[Surgaety/euocq]]

[[eaT3oy/euoq]/[eaT3oy/euoq]] () ge:p:pesoeuuc):q [[Burszery/eucq]/[SBurgzeTy/euoq]]

[[euoq/eucq] /[eucq/eucq]] () Fe:p:aoeuucostq:g [[SurszeTy/eucq]/[BurgzeTy/euoq]]

[[euoq/euoq]/[eucq/eucoq]] () Ze:p:3oeuuoostq:q [[uorgdeoxqy/Suryaogsren]/[euoq/euoq]]

[[eaTaoy/SutyIrogaten]/[6AT30y/ouoq]] (Te:n:peIeasuy:q) ge:p:pesodeuucn:q [[TTepSursueseaq/Suryzostey] /[TTR)PUSS/oucq]]

[[£atTToRi8ursuny/BuryIoaTen] /[TTedPUeS/eucq]] () eINTTRATTRD:HOL:T [[TTeddurjuesexq/Suryrogirey]/[TTeopPues/euoq]]
[[ButazeTy/euoq]/[BurgaeTy/ouoq]] (Te:n:peIeaTTeqIT®D:%

fze:n:urdtIo-qdweggyuorgeuTwze] 4 ge:n: gIeTy:3) peadeocoyTTen:HOL:T [[TTeD8urdueseaq/Suryaoaten]/[TTeoPUeS/ouoq]]

[[euoq/euoq] /[uoTadeoxqg/euoq]] (Te:n:peIesTHITeD:3) ge:p:3oeuuosstq:3 [[TTedSurjussead/Suryzogsrey]/[TTeoPUes/ouoq]]

[[euoq/eucq] /[euoq/euoq]] () Te:p:3oeuucostq:s [[TTedSurquesexqd/Suryrogaten]/[TTeopues/euoq]]

[[euoq/euoq] /[uoTsdeoxy/euoq]] () ge:p:adoeuucost(q:g [[uorsdeoxy/Suryzogsten]/[ucradeoxyg/euoq]]

[[uoTgdeoxy/SutyzosTey]/[euoq/euoq]] () Fe:p:3oeuucostq:s [[uorgdeoxy/Suryzogsten]/[ucrsdeoxy/euoq]]

[[uotadeoxg/Sutyzogatey] /[uotsdeoxyg/euoq]] (Fe:n:fsnghyzedperre):s) Asng:|oL:T [[LaTtTToegdurquny/SBuryzoatey]/[TTeopPuUes/euoq]]

[[1Teo8utquesexq/Buryaogaten] /[TTeOPUes/ouoq]] () PUNOJALTTITORA:HIL [[AaTTroeiBurquny/Buryaoaten] /[TTROPUSS/ou0q] ]

[[euoq/euoq]/[uoTsdeoxg/euoq]] (Fe:n:peIeeTnITeD:3) ge:p:soeuucostq:s [[L3TTToR 8uTquny/Suryrogaten]/[TTeopuUes/oucq]]

[[euoq/euoq] /[eucq/eucq]] () Fe:p:3oeuuwcostq:s [[L3TTToRgSurquny/SuryIogstey] /[TTROPUSS/ouoq]]

[[euoq/euoq]/[euoq/euoq]] () Te:p:3oeuuoosstq:3 [[euoq/euoq]/[uctsdeoxy/euoq]]

[[TTnH/TTInN]/[euoq/euoq]] () Te:p:3oeuuwocostq:s [[TTNN/TTnNH]/[ucTrsdeoxqy/puegIogatey]]

[[uotadeoxg/Sutyzogatey] /[ucrsdeoxyg/euoq]] (Fe:n:peIeeTHITe:3) POTUSQUOTJRUTWIOL [OL:T [[uUoTseutwIelysny/SuryIojatey]/[TTeopPuUes/ouoq]]

[[£stTToRiBuTsuny/SBuryro3TeN] /[TTROPUSS/0u0q]] () PO3UeseIdTTRD :HOL [[uoTgeutureysny/SuryIosTen] /[TTeOPUSS/ou0q]]

[[euoq/euoq]/[uoTadeoxy/euoq]] (Fe:n:peIesTHITe:3) ZR:P:300UU0OST(Q:q [[UoTgeuTwzefysny/Suryrogaten]/[TTeopues/euoq]]

[[euoq/euoq] /[eucq/eucq]] () Te:p:3oeuucosT(q:s [[UoTgeurwIelysny/Suryrojsrey] /[TTR)PUeS/euoq]]

[[TTnH/TTnN]/[uoTedeoxy/puesIoaTel]] (Tein:peTusqaesTTe):3) peTueqdnyeSTTed:HO0:T [[TTRH/TTInN]/[dniegTTedYIny/PUeSIoIaTeN]]

[[uoTgeutuIe [ysny/Buryrogatey] /[TTedpues/euoq]] () pezraoysnydnyesTTen:HO0:T [[TTnM/TInN]/[dnsesTTeousny/puegiogatey]]

[[TTnH/TInH]/[ouoq/euoq]] () Te:p:4oeuwoostq:4 [[TIRH/TINH]/[dnsesTTROYINY/PUSSIOITRI]]

[[TInH/TTnE] /[euoq/TInN]] () Te:p:aoeuuoost@:s [[TTNN/TInM]/[eanoydurscetes/TInN]]

[[TTnH/TInN]/[wotsdeoxm/TInN]] (Te:n:Lsngyronse[:9) Lsngyroage:HO0:T [[TTnH/TInH]/[esnoydursoeteg/TInN]]

[[TInm/TTInE] / [dnsesTTROUINY /PUSgIO 4 TRN]] () PesoeTegesnoy:NO0: T [[TTN/TInH]/[esnoySursoetes/TINN]]

[[TTnM/TTnE]/[euwoq/TInN]] () Te:p:aoeuucostq@:s [[TTnN/TTInM]/[oFurdurzirteuy/TIni]]

[[TTnH/TTnN] /[uotadeoxm/TInA]] (Te:n:OFUIPTTRAUI:Y) OFUIPTTRAUI:{D0:T [[TTnN/TTnH]/[oFurdurziteuy/TInN]]

[[TTnm/TTRA]/ [e3noyButasetes/TTINA]] () OFUIPTTRA:HWO0:T [[TTnM/TTnN]/[oFuiSurzireuy/TTnN]]

[[TTnH/TTnN] /[euwoq/TInH]] () Fe:P:goeuuwosstq:s [[TTRN/TTnN]/[uctadeoxq/TInN]]

[[TIn/TTnE] /[euoq/TInN]] () Fe:p:aoceuuoost@:s [[TTMN/TINM]/[0FuIduTraoeTTon/TInN]]

[[TTnm/TTRN] / [woTadeoxq/TINH]] (T®:N:3NOSWILUOTIO6TTON:S) $NOGWIIUOTIO6TTOD OO0 T [[TTNH/TINN]/ [FuIBuTaoeTT0on/TINN]]

[[TTnu/TInN] / [oFurBurziteuy/TTnH]] () Te:P:peaceTTopoFul:s [[TTnN/TInM]/[oFuIdurioeTTon/TInN]]

[[TInm/TTInN] / [oFurButaoeTTon/TTnH]] () Fe:P:oyul:s [[TInH/TTnH]/[oFuiBuraoeTTod/TInN]]

[[TInH/TInH] /[euoa/TTnH]] () Fe:p:aoceuucostq:s [[TTnH/TInM]/[2dwesay3ragyany/TIni]]

[[TInu/TTnn] /[uotadeoxy/TInH]] (Te:n:peTuequorseurStIg:4) peTuequoTseutdTIQ:HO0:T [[TTnH/TTnH]/[2dwesay3Tagyany/TTnN]]

[[TTnH/TTInN]/[oFuIBuTgoeTTon/TINN]] (Te:n:oguIdoeT1op:3) peseutrS8tag:Hp0:T [[TTnH/TTnH]/[sdwessyStagyany/TInN]]

[[TTnu/TInN] / [3dwesayStaguany/TIna]] () Fe:p:adwesgyuorgeurBrag:s [[TTM/TTRN]/[TINN/TINN]]

‘wotgeoryroeds 1§ pesereusd ArTeorsewoqny # [[WOL/AND]/[HD0/4aND]]



